Mao P, Reddy PH (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim Biophys Acta 1812:1359–1370. https://doi.org/10.1016/j.bbadis.2011.08.005
Article CAS PubMed PubMed Central Google Scholar
Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. NeuroImage 51:501–11. https://doi.org/10.1016/j.neuroimage.2010.03.020
Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250. https://doi.org/10.1146/annurev.neuro.28.051804.101459
Article CAS PubMed Google Scholar
Yau SY, Li A, So KF (2015) Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plast 6:1–13. https://doi.org/10.1155/2015/717958
LaFerla FM, Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S (2007) Neural stem cell improve memory in an inducible mouse model of neuronal loss. J Neurosci 27:11925–11933. https://doi.org/10.1523/JNEUROSCI.1627-07.2007
Article CAS PubMed PubMed Central Google Scholar
Kitabatake Y, Sailor KA, Ming GL, Song HJ (2007) Adult neurogenesis and hippocampal memory function: new cells, more plasticity, new memories? Neurosurg Clin N Am 18:105–113. https://doi.org/10.1016/j.nec.2006.10.008
Article PubMed PubMed Central Google Scholar
Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative disease. Neurobiol Aging 23:795–807. https://doi.org/10.1016/S0197-4580(02)00019-2
Article CAS PubMed Google Scholar
Wu W, Wang X, Xiang Q, Meng X, Peng Y, Du N et al (2014) Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct 5:158–166. https://doi.org/10.1039/c3fo60400d
Article CAS PubMed Google Scholar
Song X, Bao M, Li D, Li YM (1999) Advanced glycation in D-galactose induced mouse aging model. Mech Aging Dev 108:239–251. https://doi.org/10.1016/S0047-6374(99)00022-6
Article CAS PubMed Google Scholar
Feng Y, Yu YH, Wang ST, Ren J, Camer D, Hua YZ et al (2016) Chlorogenic acid protects D-galactose-induced liver and kidney injury via antioxidation and anti-Inflammation effects in mice. Pharm Biol 54(6):1027–1034. https://doi.org/10.3109/13880209.2015.1093510
Article CAS PubMed PubMed Central Google Scholar
Saenno R, Dornlakorn O, Anosri T, Kaewngam S, Sirichoat A, Aranarochana A et al (2022) Caffeic acid alleviates memory and hippocampal neurogenesis deficits in aging rats induced by D-galactose. Nutrients 14:2169. https://doi.org/10.3390/nu14102169
Article CAS PubMed PubMed Central Google Scholar
Prajit R, Sritawan N, Suwannakot K, Naewla S, Aranarochana A, Sirichoat A et al (2020) Chrysin protects against memory and hippocampal neurogenesis depletion in D-galactose-induced aging in rats. Nutrients 12:1100. https://doi.org/10.3390/nu12041100
Article CAS PubMed PubMed Central Google Scholar
Banji D, Banji OJ, Dasaroju S, Kranthi KC (2013) Curcumin and piperine abrogate lipid and protein oxidation induced by D-galactose in rat brain. Brain Res 1515:1–11. https://doi.org/10.1016/j.brainres.2013.03.023
Article CAS PubMed Google Scholar
Benn SC, Woolf CJ (2004) Adult neuron survival strategies–slamming on the brakes. Nat Rev Neurosci 5(9):686–700. https://doi.org/10.1038/nrn1477
Article CAS PubMed Google Scholar
Qian YF, Wang H, Yao WB, Gao XD (2008) Aqueous extract of the Chinese medicine, Danggui-Shaoyao-San, inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Cell Biol Int 32(2):304–311. https://doi.org/10.1016/j.cellbi.2007.10.004
Shwe T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2018) Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol 101:13–36. https://doi.org/10.1016/j.exger.2017.10.029
Article CAS PubMed Google Scholar
Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75(3):207–46. https://doi.org/10.1016/j.pneurobio.2005.02.004
Article CAS PubMed Google Scholar
Clifford M (2000) Chlorogenic acids and other cinnamates-nature, occurrence, dietary burden. J Sci Food Agric 80:1033–1043. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3%3c362::AID-JSFA256%3e3.0.CO;2-D
Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46(2):101–123. https://doi.org/10.1080/10408390500400009
Article CAS PubMed Google Scholar
Nardini M, D’Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C (1995) Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic Biol Med 19:541–552. https://doi.org/10.1016/0891-5849(95)00052-Y
Article CAS PubMed Google Scholar
Chen YF, Tsai HY, Wu TS (1995) Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med 61:2–8. https://doi.org/10.1055/s-2006-957987
Article CAS PubMed Google Scholar
Ani V, Naidu KA (2011) Antioxidant potential of bitter cumin (Centratherum anthelminticum (L.) Kuntze) seeds in in vitro models. BMC Complement Altern Med 11:40. https://doi.org/10.1186/1472-6882-11-40
Article CAS PubMed PubMed Central Google Scholar
Pereira P, de Oliveira PA, Ardenghi P, Rotta L, Henriques JA, Picada JN (2006) Neuropharmacological analysis of caffeic acid in rats. Basic Clin Pharmacol Toxicol 99(5):374–378. https://doi.org/10.1111/j.1742-7843.2006.pto_533.x
Article CAS PubMed Google Scholar
Genaro-Mattos TC, Maurício AQ, Rettori D, Alonso A, Hermes-Lima M (2015) Antioxidant activity of caffeic acid against iron-induced free radical generation-a chemical approach. PLoS ONE 10:e0129963. https://doi.org/10.1371/journal.pone.0142402
Article CAS PubMed PubMed Central Google Scholar
Deshmukh R, Kaundal M, Bansal V, Samardeep, (2016) Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats. Biomed Pharmacother 81:56–62. https://doi.org/10.1016/j.biopha.2016.03.017
Article CAS PubMed Google Scholar
Chang W, Huang D, Lo YM, Tee Q, Kuo P, Swibea J et al (2019) Protective effect of caffeic acid against Alzheimer’s disease pathogenesis via modulating cerebral insulin signaling, β-amyloid accumulation, and synaptic plasticity in hyperinsulinemic rats. J Agric Food Chem 67:7684–7693. https://doi.org/10.1021/acs.jafc.9b02078
Article CAS PubMed Google Scholar
Ashabi G, Alamdary SZ, Ramin M, Khodagholi F (2013) Reduction of hippocampal apoptosis by intracerebroventricular administration of extracellular signal-regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of Alzheimer’s disease: involvement of nuclear-related factor-2 and nuclear factor-κB. Basic Clin Pharmacol Toxicol 112(3):145–155. https://doi.org/10.1111/bcpt.12000
Comments (0)