Deletion of the Transient Receptor Potential Melastatin 2 Gene Mitigates the 6-Hydroxydopamine-Induced Parkinson’s Disease–Like Pathology

Surmeier DJ (2018) Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J 285(19):3657–68. https://doi.org/10.1111/febs.14607

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397(10291):2284–303. https://doi.org/10.1016/S0140-6736(21)00218-X

Article  CAS  PubMed  Google Scholar 

Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D et al (2018) HHS Public Access 32(9):1264–1310

Google Scholar 

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J et al (2017) Parkinson disease. Nat Rev Dis Prim 3(1):1–21. https://doi.org/10.1007/978-94-007-5416-4_16

Article  CAS  Google Scholar 

Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42

Article  CAS  PubMed  Google Scholar 

Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):459–480

Article  Google Scholar 

Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, Wang Z (2021) Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Heal 9(December). https://doi.org/10.3389/fpubh.2021.776847

Pereira GM, Teixeira-dos-Santos D, Soares NM, Marconi GA, Friedrich DC, Saffie Awad P, Santos-Lobato BL, Brandão PRP, Noyce AJ, Marras C, Mata IF, Rieder CRdeM, Schuh AFS (2024) A systematic review and meta-analysis of the prevalence of Parkinson’s disease in lower to upper-middle-income countries. Npj Park Dis 10(1):181. https://doi.org/10.1038/s41531-024-00779-y

Barbosa MT, Caramelli P, Maia DP, Cunningham MCQ, Guerra HL, Lima-Costa MF et al (2006) Parkinsonism and Parkinson’s disease in the elderly: a community-based survey in Brazil (the Bambuí study). Mov Disord [Internet]. 21(6):800–8. https://doi.org/10.1002/mds.20806

Article  PubMed  Google Scholar 

Hong JY, Sunwoo MK, Yoon JH, Kang SY, Sohn YH, Lee PH et al (2020) Rapid drug increase and early onset of levodopa-induced dyskinesia in Parkinson’s disease. PLoS One 15(8 August):1–9. https://doi.org/10.1371/journal.pone.0237472

Article  CAS  Google Scholar 

Luca A, Monastero R, Baschi R, Cicero CE, Mostile G, Davì M et al (2021) Cognitive impairment and levodopa induced dyskinesia in Parkinson’s disease: a longitudinal study from the PACOS cohort. Sci Rep 11(1):1–7. https://doi.org/10.1038/s41598-020-79110-7

Article  CAS  Google Scholar 

Shi R, Fu Y, Zhao D, Boczek T, Wang W, Guo F (2021) Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms. Biochem Pharmacol 190:114664

Article  CAS  PubMed  Google Scholar 

Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H et al (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol - Cell Physiol 286(1 55-1):129–37

Article  Google Scholar 

Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T et al (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101(1):66–76

Article  CAS  PubMed  Google Scholar 

Bond CE, Greenfield SA (2007) Multiple cascade effects of oxidative stress on astroglia. Glia 55(13):1348–1361. https://doi.org/10.1002/glia.20547

Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533–2545

Article  CAS  PubMed  Google Scholar 

Huang Y, Fliegert R, Guse AH, Lü W, Du J (2020) A structural overview of the ion channels of the TRPM family. Cell Calcium 85(616):1–25

Google Scholar 

Szollosi A (2021) Two decades of evolution of our understanding of the transient receptor potential melastatin 2 (Trpm2) cation channel. Life 11(5). https://doi.org/10.3390/life11050397

Feng Z (2017) TRPM2 a potential drug target to retard oxidative stress. Front Biosci 22(9):4551. https://doi.org/10.2741/4551

Steinman J, Ovcjak A, Luo Z, Zhang X, Britto LR, Henderson JT et al (2022) Transient receptor potential melastatin 2 channels in neurological disorders: mechanisms and animal models. Adv Neurol 1(1):1–18

Article  Google Scholar 

Ferreira AF, Britto LG (2023) The transient receptor potential melastatin 2: a new therapeutical target for Parkinson′s disease? Neural Regen Res [Internet] 18(8):0 https://doi.org/10.4103/1673-5374.360343

Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S et al (2018) TRPM2 promotes neurotoxin MPP+/MPTP-Induced cell death. Mol Neurobiol 55(1):409–20. https://doi.org/10.1007/s12035-016-0338-9

Article  CAS  PubMed  Google Scholar 

Yu YP (2014) TrkA pathway(s) are involves in the regulation of TRPM2 and TRPM7 expression in the substantia nigra of the Parkinson’s disease rat model induced by 6-hydroxydopamine. Adv Res 2(12):782–96

Article  Google Scholar 

Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR (2022) Inhibition of TRPM2 by AG490 is neuroprotective in a Parkinson’s disease animal model. Mol Neurobiol 59(3):1543–59. https://doi.org/10.1007/s12035-022-02723-8

Article  CAS  PubMed  Google Scholar 

Tamura H, Nishio R, Saeki N, Katahira M, Morioka H, Tamano H et al (2022) Paraquat-induced intracellular Zn2+ dysregulation causes dopaminergic degeneration in the substantia nigra, but not in the striatum. Neurotoxicology 90(March):136–44. https://doi.org/10.1016/j.neuro.2022.03.010

Article  CAS  PubMed  Google Scholar 

Ferreira AFF, Ulrich H, Feng ZP, Sun HS, Britto LR (2024) Neurodegeneration and glial morphological changes are both prevented by TRPM2 inhibition during the progression of a Parkinson’s disease mouse model. Exp Neurol 377:114780. https://doi.org/10.1016/j.expneurol.2024.114780

Vaidya B, Kaur H, Thapak P, Sharma SS, Singh JN (2022) Pharmacological modulation of TRPM2 channels via PARP pathway leads to neuroprotection in mptp-induced Parkinson’s disease in Sprague Dawley rats. Mol Neurobiol 59(3):1528–42. https://doi.org/10.1007/s12035-021-02711-4

Article  CAS  PubMed  Google Scholar 

Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y et al (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K et al (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 32(11):3931–3941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostapchenko VG, Chen M, Guzman MS, Xie YF, Lavine N, Fan J et al (2015) The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci 35(45):15157–15169

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsutsui M, Hirase R, Miyamura S, Nagayasu K, Nakagawa T, Mori Y et al (2018) TRPM2 exacerbates central nervous system inflammation in experimental autoimmune encephalomyelitis by increasing production of CXCL2 chemokines. J Neurosci 38(39):8484–8495

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A et al (2014) TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 5(11):e1541

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang S, Turlova E, Li F, Bao M hua hua, Szeto V, Wong R, et al (2017) Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 296:32–40. https://doi.org/10.1016/j.expneurol.2017.06.023

Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509(7500):282–283. https://doi.org/10.1038/509282a

Karlsson Lind L, Rydberg DM, Schenck-Gustafsson K (2023) Sex and gender differences in drug treatment: experiences from the knowledge database Janusmed Sex and Gender. Biol Sex Differ 14(1):28. https://doi.org/10.1186/s13293-023-00511-0

Article  PubMed  PubMed Central  Google Scholar 

Zucker I, Prendergast BJ (2020) Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol Sex Differ 11(1):32. https://doi.org/10.1186/s13293-020-00308-5

Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM (2023) Selecting the best animal model of Parkinson’s disease for your research purpose: insight from in vivo PET imaging studies. Curr Neuropharmacol 21(5):1241–1272. https://doi.org/10.2174/1570159X21666230216101659

Ortelli P, Ferrazzoli D, Zarucchi M, Maestri R, Frazzitta G (2018) Asymmetric dopaminergic degeneration and attentional resources in Parkinson’s disease. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00972

Paxinos G, Franklin KBJ (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Academic press

Cho C, Michailidis V, Lecker I, Collymore C, Hanwell D, Loka M, Danesh M, Pham C, Urban P, Bonin RP, Martin LJ (2019) Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci Rep 9(1):359. https://doi.org/10.1038/s41598-018-36897-w

Binda KH, Real CC, Ferreira AFF, Britto LR, Chacur M (2020) Antinociceptive effects of treadmill exercise in a rat model of Parkinson’s disease: the role of cannabinoid and opioid receptors. Brain Res [Internet]. 1727(November 2019):146521. https://doi.org/10.1016/j.brainres.2019.146521

Article  CAS  PubMed 

Comments (0)

No login
gif