Surmeier DJ (2018) Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J 285(19):3657–68. https://doi.org/10.1111/febs.14607
Article CAS PubMed PubMed Central Google Scholar
Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397(10291):2284–303. https://doi.org/10.1016/S0140-6736(21)00218-X
Article CAS PubMed Google Scholar
Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D et al (2018) HHS Public Access 32(9):1264–1310
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J et al (2017) Parkinson disease. Nat Rev Dis Prim 3(1):1–21. https://doi.org/10.1007/978-94-007-5416-4_16
Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42
Article CAS PubMed Google Scholar
Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):459–480
Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, Wang Z (2021) Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Heal 9(December). https://doi.org/10.3389/fpubh.2021.776847
Pereira GM, Teixeira-dos-Santos D, Soares NM, Marconi GA, Friedrich DC, Saffie Awad P, Santos-Lobato BL, Brandão PRP, Noyce AJ, Marras C, Mata IF, Rieder CRdeM, Schuh AFS (2024) A systematic review and meta-analysis of the prevalence of Parkinson’s disease in lower to upper-middle-income countries. Npj Park Dis 10(1):181. https://doi.org/10.1038/s41531-024-00779-y
Barbosa MT, Caramelli P, Maia DP, Cunningham MCQ, Guerra HL, Lima-Costa MF et al (2006) Parkinsonism and Parkinson’s disease in the elderly: a community-based survey in Brazil (the Bambuí study). Mov Disord [Internet]. 21(6):800–8. https://doi.org/10.1002/mds.20806
Hong JY, Sunwoo MK, Yoon JH, Kang SY, Sohn YH, Lee PH et al (2020) Rapid drug increase and early onset of levodopa-induced dyskinesia in Parkinson’s disease. PLoS One 15(8 August):1–9. https://doi.org/10.1371/journal.pone.0237472
Luca A, Monastero R, Baschi R, Cicero CE, Mostile G, Davì M et al (2021) Cognitive impairment and levodopa induced dyskinesia in Parkinson’s disease: a longitudinal study from the PACOS cohort. Sci Rep 11(1):1–7. https://doi.org/10.1038/s41598-020-79110-7
Shi R, Fu Y, Zhao D, Boczek T, Wang W, Guo F (2021) Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms. Biochem Pharmacol 190:114664
Article CAS PubMed Google Scholar
Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H et al (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol - Cell Physiol 286(1 55-1):129–37
Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T et al (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101(1):66–76
Article CAS PubMed Google Scholar
Bond CE, Greenfield SA (2007) Multiple cascade effects of oxidative stress on astroglia. Glia 55(13):1348–1361. https://doi.org/10.1002/glia.20547
Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533–2545
Article CAS PubMed Google Scholar
Huang Y, Fliegert R, Guse AH, Lü W, Du J (2020) A structural overview of the ion channels of the TRPM family. Cell Calcium 85(616):1–25
Szollosi A (2021) Two decades of evolution of our understanding of the transient receptor potential melastatin 2 (Trpm2) cation channel. Life 11(5). https://doi.org/10.3390/life11050397
Feng Z (2017) TRPM2 a potential drug target to retard oxidative stress. Front Biosci 22(9):4551. https://doi.org/10.2741/4551
Steinman J, Ovcjak A, Luo Z, Zhang X, Britto LR, Henderson JT et al (2022) Transient receptor potential melastatin 2 channels in neurological disorders: mechanisms and animal models. Adv Neurol 1(1):1–18
Ferreira AF, Britto LG (2023) The transient receptor potential melastatin 2: a new therapeutical target for Parkinson′s disease? Neural Regen Res [Internet] 18(8):0 https://doi.org/10.4103/1673-5374.360343
Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S et al (2018) TRPM2 promotes neurotoxin MPP+/MPTP-Induced cell death. Mol Neurobiol 55(1):409–20. https://doi.org/10.1007/s12035-016-0338-9
Article CAS PubMed Google Scholar
Yu YP (2014) TrkA pathway(s) are involves in the regulation of TRPM2 and TRPM7 expression in the substantia nigra of the Parkinson’s disease rat model induced by 6-hydroxydopamine. Adv Res 2(12):782–96
Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR (2022) Inhibition of TRPM2 by AG490 is neuroprotective in a Parkinson’s disease animal model. Mol Neurobiol 59(3):1543–59. https://doi.org/10.1007/s12035-022-02723-8
Article CAS PubMed Google Scholar
Tamura H, Nishio R, Saeki N, Katahira M, Morioka H, Tamano H et al (2022) Paraquat-induced intracellular Zn2+ dysregulation causes dopaminergic degeneration in the substantia nigra, but not in the striatum. Neurotoxicology 90(March):136–44. https://doi.org/10.1016/j.neuro.2022.03.010
Article CAS PubMed Google Scholar
Ferreira AFF, Ulrich H, Feng ZP, Sun HS, Britto LR (2024) Neurodegeneration and glial morphological changes are both prevented by TRPM2 inhibition during the progression of a Parkinson’s disease mouse model. Exp Neurol 377:114780. https://doi.org/10.1016/j.expneurol.2024.114780
Vaidya B, Kaur H, Thapak P, Sharma SS, Singh JN (2022) Pharmacological modulation of TRPM2 channels via PARP pathway leads to neuroprotection in mptp-induced Parkinson’s disease in Sprague Dawley rats. Mol Neurobiol 59(3):1528–42. https://doi.org/10.1007/s12035-021-02711-4
Article CAS PubMed Google Scholar
Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y et al (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747
Article CAS PubMed PubMed Central Google Scholar
Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K et al (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 32(11):3931–3941
Article CAS PubMed PubMed Central Google Scholar
Ostapchenko VG, Chen M, Guzman MS, Xie YF, Lavine N, Fan J et al (2015) The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci 35(45):15157–15169
Article CAS PubMed PubMed Central Google Scholar
Tsutsui M, Hirase R, Miyamura S, Nagayasu K, Nakagawa T, Mori Y et al (2018) TRPM2 exacerbates central nervous system inflammation in experimental autoimmune encephalomyelitis by increasing production of CXCL2 chemokines. J Neurosci 38(39):8484–8495
Article CAS PubMed PubMed Central Google Scholar
Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A et al (2014) TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 5(11):e1541
Article CAS PubMed PubMed Central Google Scholar
Huang S, Turlova E, Li F, Bao M hua hua, Szeto V, Wong R, et al (2017) Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 296:32–40. https://doi.org/10.1016/j.expneurol.2017.06.023
Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509(7500):282–283. https://doi.org/10.1038/509282a
Karlsson Lind L, Rydberg DM, Schenck-Gustafsson K (2023) Sex and gender differences in drug treatment: experiences from the knowledge database Janusmed Sex and Gender. Biol Sex Differ 14(1):28. https://doi.org/10.1186/s13293-023-00511-0
Article PubMed PubMed Central Google Scholar
Zucker I, Prendergast BJ (2020) Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol Sex Differ 11(1):32. https://doi.org/10.1186/s13293-020-00308-5
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM (2023) Selecting the best animal model of Parkinson’s disease for your research purpose: insight from in vivo PET imaging studies. Curr Neuropharmacol 21(5):1241–1272. https://doi.org/10.2174/1570159X21666230216101659
Ortelli P, Ferrazzoli D, Zarucchi M, Maestri R, Frazzitta G (2018) Asymmetric dopaminergic degeneration and attentional resources in Parkinson’s disease. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00972
Paxinos G, Franklin KBJ (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Academic press
Cho C, Michailidis V, Lecker I, Collymore C, Hanwell D, Loka M, Danesh M, Pham C, Urban P, Bonin RP, Martin LJ (2019) Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci Rep 9(1):359. https://doi.org/10.1038/s41598-018-36897-w
Binda KH, Real CC, Ferreira AFF, Britto LR, Chacur M (2020) Antinociceptive effects of treadmill exercise in a rat model of Parkinson’s disease: the role of cannabinoid and opioid receptors. Brain Res [Internet]. 1727(November 2019):146521. https://doi.org/10.1016/j.brainres.2019.146521
Comments (0)