Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, Wang L, Jiang Y, Li Y, Wang Y, Chen Z, Wu S, Zhang Y, Wang D, Wang Y, Feigin VL (2017) Prevalence, incidence, and mortality of stroke in china: results from a nationwide population-based survey of 480 687 adults. Circulation 135(8):759–771. https://doi.org/10.1161/circulationaha.116.025250
Gorelick PB (2019) The global burden of stroke: persistent and disabling. Lancet Neurol 18(5):417–418. https://doi.org/10.1016/s1474-4422(19)30030-4
Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G (2012) Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379(9834):2364–2372. https://doi.org/10.1016/s0140-6736(12)60738-7
Article PubMed PubMed Central CAS Google Scholar
Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029):1723–1731. https://doi.org/10.1016/s0140-6736(16)00163-x
Tanne D, Kasner SE, Demchuk AM, Koren-Morag N, Hanson S, Grond M, Levine SR (2002) Markers of increased risk of intracerebral hemorrhage after intravenous recombinant tissue plasminogen activator therapy for acute ischemic stroke in clinical practice: the Multicenter rt-PA Stroke Survey. Circulation 105(14):1679–1685. https://doi.org/10.1161/01.cir.0000012747.53592.6a
Article PubMed CAS Google Scholar
Wang W, Li M, Chen Q, Wang J (2015) Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: mechanisms, models, and biomarkers. Mol Neurobiol 52(3):1572–1579. https://doi.org/10.1007/s12035-014-8952-x
Article PubMed CAS Google Scholar
Desai SM, Rocha M, Molyneaux BJ, Starr M, Kenmuir CL, Gross BA, Jankowitz BT, Jovin TG, Jadhav AP (2018) Thrombectomy 6–24 hours after stroke in trial ineligible patients. J Neurointerv Surg 10(11):1033–1037. https://doi.org/10.1136/neurintsurg-2018-013915
Clery A, Martin FC, Redmond P, Marshall I, McKevitt C, Sackley C, Manthorpe J, Wolfe C, Wang Y (2021) Survival and outcomes for stroke survivors living in care homes: a prospective cohort study. Age Ageing 50(6):2079–2087. https://doi.org/10.1093/ageing/afab140
Article PubMed PubMed Central Google Scholar
Hong JM, Kim DS, Kim M (2021) Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front Neurol 12:703258. https://doi.org/10.3389/fneur.2021.703258
Article PubMed PubMed Central Google Scholar
Nian K, Harding IC, Herman IM, Ebong EE (2020) Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction. Front Physiol 11:605398. https://doi.org/10.3389/fphys.2020.605398
Article PubMed PubMed Central Google Scholar
Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. https://doi.org/10.1016/j.neuron.2008.01.003
Article PubMed CAS Google Scholar
Zhang S, Kong DW, Ma GD, Liu CD, Yang YJ, Liu S, Jiang N, Pan ZR, Zhang W, Kong LL, Du GH (2022) Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway. Acta Pharmacol Sin 43(9):2212–2225. https://doi.org/10.1038/s41401-021-00844-9
Article PubMed PubMed Central CAS Google Scholar
Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970. https://doi.org/10.1038/nm747
Article PubMed CAS Google Scholar
Ma G, Pan Z, Kong L, Du G (2021) Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 90:107216. https://doi.org/10.1016/j.intimp.2020.107216
Article PubMed CAS Google Scholar
Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243(1):136–151. https://doi.org/10.1111/j.1600-065X.2011.01046.x
Article PubMed CAS Google Scholar
Guo Z, Yu S, Chen X, Zheng P, Hu T, Duan Z, Liu X, Liu Q, Ye R, Zhu W, Liu X (2018) Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats: involvement of neutrophil recruitment. Brain Res Bull 137:229–240. https://doi.org/10.1016/j.brainresbull.2017.12.009
Article PubMed CAS Google Scholar
Balakrishnan R, Cho D Y, Kim I S, Seol S H, and Choi D K (2022) Molecular mechanisms and therapeutic potential of α- and β-asarone in the treatment of neurological disorders. Antioxidants (Basel) 11(2). https://doi.org/10.3390/antiox11020281
Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, Sun YE, Chen G, Yu Y, Zhao J, Pei G (2015) A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell 14(5):784–796. https://doi.org/10.1111/acel.12356
Article PubMed PubMed Central CAS Google Scholar
Kim BW, Koppula S, Kumar H, Park JY, Kim IW, More SV, Kim IS, Han SD, Kim SK, Yoon SH, Choi DK (2015) α-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson’s disease. Neuropharmacology 97:46–57. https://doi.org/10.1016/j.neuropharm.2015.04.037
Article PubMed CAS Google Scholar
Jo MJ, Kumar H, Joshi HP, Choi H, Ko WK, Kim JM, Hwang SSS, Park SY, Sohn S, Bello AB, Kim KT, Lee SH, Zeng X, Han I (2018) Oral administration of α-asarone promotes functional recovery in rats with spinal cord injury. Front Pharmacol. 9:445. https://doi.org/10.3389/fphar.2018.00445
Article PubMed PubMed Central CAS Google Scholar
Zhang K, Liu Q, Luo L, Feng X, Hu Q, Fan X, Mao S (2021) Neuroprotective effect of alpha-asarone on the rats model of cerebral ischemia-reperfusion stroke via ameliorating glial activation and autophagy. Neuroscience 473:130–141. https://doi.org/10.1016/j.neuroscience.2021.08.006
Article PubMed CAS Google Scholar
Gao X, Li R, Luo L, Zhang D, Liu Q, Zhang J, Mao S (2022) Alpha-asarone ameliorates neurological deterioration of intracerebral hemorrhagic rats by alleviating secondary brain injury via anti-excitotoxicity pathways. Phytomedicine 105:154363. https://doi.org/10.1016/j.phymed.2022.154363
Article PubMed CAS Google Scholar
Chen Y, Gao X, Liu Q, Zeng L, Zhang K, Mu K, Zhang D, Zou H, Wu N, Ou J, Wang Q, Mao S (2020) Alpha-asarone improves cognitive function of aged rats by alleviating neuronal excitotoxicity via GABA(A) receptors. Neuropharmacology 162:107843. https://doi.org/10.1016/j.neuropharm.2019.107843
Article PubMed CAS Google Scholar
Huang C, Li WG, Zhang XB, Wang L, Xu TL, Wu D, Li Y (2013) α-asarone from Acorus gramineus alleviates epilepsy by modulating A-type GABA receptors. Neuropharmacology 65:1–11. https://doi.org/10.1016/j.neuropharm.2012.09.001
Article PubMed CAS Google Scholar
Wang ZJ, Levinson SR, Sun L, Heinbockel T (2014) Identification of both GABAA receptors and voltage-activated Na(+) channels as molecular targets of anticonvulsant α-asarone. Front Pharmacol 5:40. https://doi.org/10.3389/fphar.2014.00040
Article PubMed PubMed Central CAS Google Scholar
Xing L, Huttner WB (2020) Neurotransmitters as modulators of neural progenitor cell proliferation during mammalian neocortex development. Front Cell Dev Biol 8:391. https://doi.org/10.3389/fcell.2020.00391
Article PubMed PubMed Central Google Scholar
Ma WC, Zhang Q, Li H, Larregieu CA, Zhang N, Chu T, Jin H, Mao SJ (2013) Development of intravenous lipid emulsion of α-asarone with significantly improved safety and enhanced efficacy. Int J Pharm 450(1–2):21–30.
Comments (0)