Alexander HB, Arnel M, O’Connell N et al (2023) A single-center survey on physical activity barriers, behaviors and preferences in adults with epilepsy. Epilepsy Behav 149:109491. https://doi.org/10.1016/j.yebeh.2023.109491
Alkadhi KA, Dao AT (2018) Exercise decreases BACE and APP levels in the hippocampus of a rat model of Alzheimer’s disease. Mol Cell Neurosci 86:25–29. https://doi.org/10.1016/j.mcn.2017.11.008
Article CAS PubMed Google Scholar
Allen KV, Frier BM, Strachan MWJ (2004) The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol 490:169–175. https://doi.org/10.1016/j.ejphar.2004.02.054
Article CAS PubMed Google Scholar
Baba M, Nakajo S, Tu P et al (1998) Short communication sporadic Parkinson ’ s disease and Dementia with. Am J Pathologoy 152:879–884
Benedini S, Dozio E, Invernizzi PL et al (2017) Irisin: a potential link between physical exercise and metabolism - an observational study in differently trained subjects, from elite athletes to sedentary people. J Diabetes Res 2017. https://doi.org/10.1155/2017/1039161
Berchtold NC, Chinn G, Chou M et al (2005) Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133:853–861. https://doi.org/10.1016/j.neuroscience.2005.03.026
Article CAS PubMed Google Scholar
Cassilhas RC, De Sousa RAL, Caxa L et al (2021) Indoor aerobic exercise reduces exposure to pollution, improves cognitive function, and enhances BDNF levels in the elderly. Air Qual Atmos Health 1–11. https://doi.org/10.1007/s11869-021-01083-x
Cavalcante BRR, Improta-caria AC, de Melo VH, De Sousa RAL (2021) Exercise-linked consequences on epilepsy. Epilepsy Behav 121:1–6. https://doi.org/10.1016/j.yebeh.2021.108079
de Lima NS, De Sousa RAL, Amorim FT et al (2021) Moderate-intensity continuous training and high-intensity interval training improve cognition, and BDNF levels of middle-aged overweight men. Metab Brain Dis 1–9. https://doi.org/10.1007/s11011-021-00859-5
De Sousa RAL (2018) Brief report of the effects of the aerobic, resistance, and high-intensity interval training in type 2 diabetes mellitus individuals diabetes mellitus. Int J Diabetes Developing Ctries 38:138–145. https://doi.org/10.1007/s13410-017-0582-1
De Sousa RAL, Caria ACI, De Jesus Silva FM et al (2020a) High-intensity resistance training induces changes in cognitive function, but not in locomotor activity or anxious behavior in rats induced to type 2 diabetes. Physiol Behav 223:1–7. https://doi.org/10.1016/j.physbeh.2020.112998
De Sousa RAL, Harmer AR, Freitas DA et al (2020b) An update on potential links between type 2 diabetes mellitus and Alzheimer’s disease. Mol Biol Rep 47:6347–6356. https://doi.org/10.1007/s11033-020-05693-z
Article CAS PubMed Google Scholar
De Sousa RAL, Improta-Caria AC, Cassilhas RC (2021a) Effects of physical exercise on memory in type 2 diabetes: a brief review. Metabolic Brain Disease 1–5. https://doi.org/10.1007/s11011-021-00752-1
De Sousa RAL, Rodrigues CM, Mendes BF et al (2021b) Physical exercise protocols in animal models of Alzheimer ’ s disease: a systematic review. Metab Brain Dis 36:85–95. https://doi.org/10.1007/s11011-020-00633-z
De Sousa RAL, Santos LG, Lopes PM et al (2021c) Physical exercise consequences on memory in obesity: a systematic review. Obes Rev 1–10. https://doi.org/10.1111/obr.13298
De Sousa RAL, Diniz-Magalhaes CO, Cruz PP et al (2024) Physical Exercise inhibits cognitive impairment and memory loss in aged mice, and enhances pre- and Post-synaptic Proteins in the Hippocampus of Young and aged mice. Neuromol Med 26:31. https://doi.org/10.1007/s12017-024-08798-x
Elhady M, Youness ER, Gafar HS et al (2018) Circulating irisin and chemerin levels as predictors of seizure control in children with idiopathic epilepsy. Neurol Sci 39:1453–1458. https://doi.org/10.1007/s10072-018-3448-5
Ergul Erkec O, Algul S, Kara M (2018) Evaluation of ghrelin, nesfatin-1 and irisin levels of serum and brain after acute or chronic pentylenetetrazole administrations in rats using sodium valproate. Neurol Res 40:923–929. https://doi.org/10.1080/01616412.2018.1503992
Article CAS PubMed Google Scholar
Erkec OE, Milanlıoğlu A, Komuroglu AU et al (2021) Evaluation of serum ghrelin, nesfatin-1, irisin, and vasoactive intestinal peptide levels in temporal lobe epilepsy patients with and without drug resistance: a cross-sectional study. Rev Assoc Med Bras 67:207–212. https://doi.org/10.1590/1806-9282.67.02.20200521
Ferreira Mendes B, Improta-Caria AC, Diniz E, Magalhães CO et al (2024) Resistance Training reduces blood pressure: putative MolecularMechanisms. CHYR 20:52–56. https://doi.org/10.2174/0115734021277791240102041632
Gibala MJ, McGee SL, Garnham AP et al (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol (Bethesda Md: 1985) 106:929–934. https://doi.org/10.1152/japplphysiol.90880.2008
Graham LC, Grabowska WA, Chun Y et al (2019) Exercise prevents obesity-induced cognitive decline and white matter damage in mice. Neurobiol Aging 80:154–172. https://doi.org/10.1016/j.neurobiolaging.2019.03.018
Article PubMed PubMed Central Google Scholar
Gripp F, Gomes G, de Sousa J RALD, et al (2022) A real-world high-intensity interval training protocol for cardiorespiratory fitness improvement. J Visualized Experiments 22:1–14
Guillemot-Legris O, Muccioli GG (2017) Obesity-Induced Neuroinflammation: beyond the hypothalamus. Trends Neurosci 40:237–253. https://doi.org/10.1016/j.tins.2017.02.005
Article CAS PubMed Google Scholar
Hansen B, Allendorfer JB (2022) Considering social determinants of health in the relationship between physical activity and exercise engagement and cognitive impairment among persons with epilepsy. Front Rehabilit Sci 3:923856. https://doi.org/10.3389/fresc.2022.923856
Hasanah U, Rejeki PS, Wungu CDK et al (2024) High-intensity combination exercise has the highest effect on increasing serum irisin and interleukin 6 levels in women with obesity. J Basic Clin Physiol Pharmacol 35:71–78. https://doi.org/10.1515/jbcpp-2023-0150
Article CAS PubMed Google Scholar
Herring A, Donath A, Yarmolenko M et al (2012) Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J 26:117–128. https://doi.org/10.1096/fj.11-193193
Article CAS PubMed Google Scholar
Hou Q, Song R, Zhao X et al (2023) Lower circulating irisin levels in type 2 diabetes mellitus patients with chronic complications: a meta-analysis. Heliyon 9:e21859. https://doi.org/10.1016/j.heliyon.2023.e21859
Article CAS PubMed PubMed Central Google Scholar
Huang X, Wang J, Zhang S et al (2024) Plasma BDNF/Irisin ratio associates with cognitive function in older people. JAD 1–11. https://doi.org/10.3233/JAD-231347
Islam MR, Valaris S, Young MF et al (2021) Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab 3:1058–1070. https://doi.org/10.1038/s42255-021-00438-z
Article CAS PubMed PubMed Central Google Scholar
Kam T-I, Park H, Chou S-C et al (2022) Amelioration of pathologic α-synuclein-induced Parkinson’s disease by irisin. Proc Natl Acad Sci USA 119:e2204835119. https://doi.org/10.1073/pnas.2204835119
Article CAS PubMed PubMed Central Google Scholar
Kar F, Kavlak Y, Yıldız S et al (2023) Eight-week exercise program improved the quality of life of Alzheimer’s patients through functional, cognitive, and biochemical parameters. Ir J Med Sci 192:655–663. https://doi.org/10.1007/s11845-022-03029-3
Article CAS PubMed Google Scholar
Lan T, Guo Z-C, Gu H-R et al (2024) Research progress on the regulatory mechanisms of Irisin on cognitive dysfunction in patients with Alzheimer’s disease and the interventional role of Irisin in associated diseases. Sheng Li Xue Bao 76:266–288
Li X (2013) SIRT1 and energy metabolism. ABBS 45:51–60. https://doi.org/10.1093/abbs/gms108
Article CAS PubMed PubMed Central Google Scholar
Li T, Yang J, Tan A, Chen H (2023) Irisin suppresses pancreatic β cell pyroptosis in T2DM by inhibiting the NLRP3-GSDMD pathway and activating the Nrf2-TrX/TXNIP signaling axis. Diabetol Metab Syndr 15:239. https://doi.org/10.1186/s13098-023-01216-5
Article CAS PubMed PubMed Central Google Scholar
Lin J, Zhang X, Sun Y et al (2024) Exercise ameliorates muscular excessive mitochondrial fission, insulin resistance and inflammation in diabetic rats via irisin/AMPK activation. Sci Rep 14:10658. https://doi.org/10.1038/s41598-024-61415-6
Comments (0)