Tripathi RKP, Ayyannan SR. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: an overview and update. Med Res Rev. 2019;39:1603–706. https://doi.org/10.1002/med.21561
Article CAS PubMed Google Scholar
Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7:376–85. https://doi.org/10.3969/2Fj.issn.1673-5374.2012.05.009
Article CAS PubMed PubMed Central Google Scholar
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017;6:6. https://doi.org/10.1186/2Fs40035-017-0077-5
Article PubMed PubMed Central Google Scholar
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019;14:5541–54. https://doi.org/10.2147/2FIJN.S200490
Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3:932–42. https://doi.org/10.1038/nrn983
Article CAS PubMed Google Scholar
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16:529–46. https://doi.org/10.1038/s41582-020-0389-4
Kitamura T, Hino S. Disinhibition associated with long-term use of Donepezil. J Alzheimer’s Dis Parkinsonism. 2016;6. https://doi.org/10.4172/2161-0460.1000234
Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener. 2018;7:2. https://doi.org/10.1186/s40035-018-0107-y
Article CAS PubMed PubMed Central Google Scholar
Chen Z-R, Huang J-B, Yang S-L, Hong F-F. Role of cholinergic signaling in Alzheimer’s disease. molecules. 2022;27:1816. https://doi.org/10.3390/molecules27061816
Article CAS PubMed PubMed Central Google Scholar
Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16:881–91. https://doi.org/10.1016/S0896-6273(00)80108-7
Article CAS PubMed Google Scholar
Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun. 2017;8:14727. https://doi.org/10.1038/ncomms14727
Article CAS PubMed PubMed Central Google Scholar
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4:519–22. https://doi.org/10.3892/2Fbr.2016.630
Article CAS PubMed PubMed Central Google Scholar
Ibrahim MM, Gabr MT. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen Res. 2019;14:437–40. https://doi.org/10.4103/2F1673-5374.245463
Article CAS PubMed PubMed Central Google Scholar
Kumar VP, Vishnu MS, Kumar S, Jaiswal S, Ayyannan SR. Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers. 2022. https://doi.org/10.1007/s11030-022-10564-9
Tripathi RK, Rai GK, Ayyannan SR. Exploration of a library of 3,4-(methylenedioxy)aniline-derived semicarbazones as dual inhibitors of monoamine oxidase and acetylcholinesterase: design, synthesis, and evaluation. ChemMedChem. 2016;11:1145–60. https://doi.org/10.1002/cmdc.201600128
Article CAS PubMed Google Scholar
Binda C, Mattevi A, Edmondson DE. Structure-function relationships in flavoenzyme-dependent amine oxidations: a comparison of polyamine oxidase and monoamine oxidase. J Biol Chem. 2002;277:23973–6. https://doi.org/10.1074/2Fjbc.R200005200
Article CAS PubMed Google Scholar
Edmondson DE, Binda C, Mattevi A. Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Arch Biochem Biophys. 2007;464:269–76. https://doi.org/10.1016/2Fj.abb.2007.05.006
Article CAS PubMed PubMed Central Google Scholar
Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, et al. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry. 2006;63:1209–16. https://doi.org/10.1001/2Farchpsyc.63.11.1209
Article CAS PubMed Google Scholar
Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994;62:15–30. https://doi.org/10.1016/2F0306-4522/2894/2990311-5
Article CAS PubMed Google Scholar
Alvarez A, Opazo C, Alarcón R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils11Edited by A. R. Fersht. J Mol Biol. 1997;272:348–61. https://doi.org/10.1006/jmbi.1997.1245
Article CAS PubMed Google Scholar
LaRocca TJ, Cavalier AN, Roberts CM, Lemieux MR, Ramesh P, Garcia MA, et al. Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis. 2021;159:105493 https://doi.org/10.1016/j.nbd.2021.105493
Article CAS PubMed PubMed Central Google Scholar
Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharm. 2005;146:1041–59. https://doi.org/10.1038/2Fsj.bjp.0706416
Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5:863–73. https://doi.org/10.1038/nrn1537
Article CAS PubMed Google Scholar
Ruankham W, Suwanjang W, Wongchitrat P, Prachayasittikul V, Prachayasittikul S, Phopin K. Sesamin and sesamol attenuate H(2)O(2)-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr Neurosci. 2021;24:90–101. https://doi.org/10.1080/1028415X.2019.1596613
Abu-Elfotuh K, Hamdan AME, Mohammed AA, Atwa AM, Kozman MR, Ibrahim AM, et al. Neuroprotective effects of some nutraceuticals against manganese-induced parkinson’s disease in rats: possible modulatory effects on TLR4/NLRP3/NF-kappaB, GSK-3beta, Nrf2/HO-1, and apoptotic pathways. Pharmaceuticals (Basel). 2022;15. https://doi.org/10.3390/ph15121554
Narasimhan R, Vaithiyanathan M, Janardanam V. Neuroprotective effect of sesamol in glioma induced in rats. Biomed Int. 2011;2:22–27.
Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW, Teng LZ. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med. 2017;14:841–7. https://doi.org/10.3892/etm.2017.4550
Article CAS PubMed PubMed Central Google Scholar
Vishnu MS, Pavankumar V, Kumar S, Raja AS. Experimental and computational evaluation of piperonylic acid derived hydrazones bearing isatin moieties as dual inhibitors of cholinesterases and monoamine oxidases. ChemMedChem. 2019;14:1359–76. https://doi.org/10.1002/cmdc.201900277
Article CAS PubMed Google Scholar
Plazas E, Hagenow S, Avila Murillo M, Stark H, Cuca LE. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Abeta(1-42) aggregation. Bioorg Chem. 2020;98:103722 https://doi.org/10.1016/j.bioorg.2020.103722
Article CAS PubMed Google Scholar
Ji H-F, Shen L. Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules. 2011. https://doi.org/10.3390/mo
Comments (0)