Design, synthesis and evaluation of sesamol-derived acetamides as dual inhibitors of monoamine oxidases and cholinesterases

Tripathi RKP, Ayyannan SR. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: an overview and update. Med Res Rev. 2019;39:1603–706. https://doi.org/10.1002/med.21561

Article  CAS  PubMed  Google Scholar 

Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7:376–85. https://doi.org/10.3969/2Fj.issn.1673-5374.2012.05.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017;6:6. https://doi.org/10.1186/2Fs40035-017-0077-5

Article  PubMed  PubMed Central  Google Scholar 

Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019;14:5541–54. https://doi.org/10.2147/2FIJN.S200490

Article  CAS  Google Scholar 

Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3:932–42. https://doi.org/10.1038/nrn983

Article  CAS  PubMed  Google Scholar 

Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16:529–46. https://doi.org/10.1038/s41582-020-0389-4

Article  PubMed  Google Scholar 

Kitamura T, Hino S. Disinhibition associated with long-term use of Donepezil. J Alzheimer’s Dis Parkinsonism. 2016;6. https://doi.org/10.4172/2161-0460.1000234

Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener. 2018;7:2. https://doi.org/10.1186/s40035-018-0107-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z-R, Huang J-B, Yang S-L, Hong F-F. Role of cholinergic signaling in Alzheimer’s disease. molecules. 2022;27:1816. https://doi.org/10.3390/molecules27061816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16:881–91. https://doi.org/10.1016/S0896-6273(00)80108-7

Article  CAS  PubMed  Google Scholar 

Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun. 2017;8:14727. https://doi.org/10.1038/ncomms14727

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4:519–22. https://doi.org/10.3892/2Fbr.2016.630

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibrahim MM, Gabr MT. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen Res. 2019;14:437–40. https://doi.org/10.4103/2F1673-5374.245463

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar VP, Vishnu MS, Kumar S, Jaiswal S, Ayyannan SR. Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers. 2022. https://doi.org/10.1007/s11030-022-10564-9

Tripathi RK, Rai GK, Ayyannan SR. Exploration of a library of 3,4-(methylenedioxy)aniline-derived semicarbazones as dual inhibitors of monoamine oxidase and acetylcholinesterase: design, synthesis, and evaluation. ChemMedChem. 2016;11:1145–60. https://doi.org/10.1002/cmdc.201600128

Article  CAS  PubMed  Google Scholar 

Binda C, Mattevi A, Edmondson DE. Structure-function relationships in flavoenzyme-dependent amine oxidations: a comparison of polyamine oxidase and monoamine oxidase. J Biol Chem. 2002;277:23973–6. https://doi.org/10.1074/2Fjbc.R200005200

Article  CAS  PubMed  Google Scholar 

Edmondson DE, Binda C, Mattevi A. Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Arch Biochem Biophys. 2007;464:269–76. https://doi.org/10.1016/2Fj.abb.2007.05.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, et al. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry. 2006;63:1209–16. https://doi.org/10.1001/2Farchpsyc.63.11.1209

Article  CAS  PubMed  Google Scholar 

Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994;62:15–30. https://doi.org/10.1016/2F0306-4522/2894/2990311-5

Article  CAS  PubMed  Google Scholar 

Alvarez A, Opazo C, Alarcón R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils11Edited by A. R. Fersht. J Mol Biol. 1997;272:348–61. https://doi.org/10.1006/jmbi.1997.1245

Article  CAS  PubMed  Google Scholar 

LaRocca TJ, Cavalier AN, Roberts CM, Lemieux MR, Ramesh P, Garcia MA, et al. Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis. 2021;159:105493 https://doi.org/10.1016/j.nbd.2021.105493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharm. 2005;146:1041–59. https://doi.org/10.1038/2Fsj.bjp.0706416

Article  CAS  Google Scholar 

Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5:863–73. https://doi.org/10.1038/nrn1537

Article  CAS  PubMed  Google Scholar 

Ruankham W, Suwanjang W, Wongchitrat P, Prachayasittikul V, Prachayasittikul S, Phopin K. Sesamin and sesamol attenuate H(2)O(2)-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr Neurosci. 2021;24:90–101. https://doi.org/10.1080/1028415X.2019.1596613

Article  PubMed  Google Scholar 

Abu-Elfotuh K, Hamdan AME, Mohammed AA, Atwa AM, Kozman MR, Ibrahim AM, et al. Neuroprotective effects of some nutraceuticals against manganese-induced parkinson’s disease in rats: possible modulatory effects on TLR4/NLRP3/NF-kappaB, GSK-3beta, Nrf2/HO-1, and apoptotic pathways. Pharmaceuticals (Basel). 2022;15. https://doi.org/10.3390/ph15121554

Narasimhan R, Vaithiyanathan M, Janardanam V. Neuroprotective effect of sesamol in glioma induced in rats. Biomed Int. 2011;2:22–27.

Google Scholar 

Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW, Teng LZ. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med. 2017;14:841–7. https://doi.org/10.3892/etm.2017.4550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vishnu MS, Pavankumar V, Kumar S, Raja AS. Experimental and computational evaluation of piperonylic acid derived hydrazones bearing isatin moieties as dual inhibitors of cholinesterases and monoamine oxidases. ChemMedChem. 2019;14:1359–76. https://doi.org/10.1002/cmdc.201900277

Article  CAS  PubMed  Google Scholar 

Plazas E, Hagenow S, Avila Murillo M, Stark H, Cuca LE. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Abeta(1-42) aggregation. Bioorg Chem. 2020;98:103722 https://doi.org/10.1016/j.bioorg.2020.103722

Article  CAS  PubMed  Google Scholar 

Ji H-F, Shen L. Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules. 2011. https://doi.org/10.3390/mo

Comments (0)

No login
gif