An Index for Quantum Cellular Automata on Fusion Spin Chains

Arano, Y., De Commer, K.: Torsion-freeness for fusion rings and tensor \(^*\)-categories. J. Noncommut. Geom. 13(1), 35–58 (2019)

MathSciNet  Google Scholar 

Aasen, D., Fendley, P., Roger, M.: Dualities and degeneracies, Topological defects on the lattice (2020)

Aasen, D., Haah, J., Li, Z., Mong, R.: Measurement quantum cellular automata and anomalies in floquet codes (2023)

Aasen, D., Mong, R., Fendley, P.: Topological defects on the lattice: I. The Ising model. J. Phys. A Math. Theor. 49(35), 354001 (2016)

MathSciNet  Google Scholar 

Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77(2), 372–378 (2011)

MathSciNet  Google Scholar 

Arrighi, P.: An overview of quantum cellular automata. Nat. Comput. 18(4), 885–899 (2019)

MathSciNet  Google Scholar 

Aasen, D., Wang, Z., Hastings, M.: Adiabatic paths of Hamiltonians, symmetries of topological order, and automorphism codes. Phys. Rev. B 106, 085122085122 (2022)

ADS  Google Scholar 

Buican, M., Gromov, A.: Anyonic chains, topological defects, and conformal field theory. Comm. Math. Phys. 356(3), 1017–1056 (2017)

ADS  MathSciNet  Google Scholar 

Bischoff, M., Kawahigashi, Y., Longo, R., Rehren, K.: Tensor categories and endomorphisms of von Neumann algebras–with applications to quantum field theory. In: SpringerBriefs in Mathematical Physics, vol. 3. Springer, Cham (2015)

Bultinck, N., Mariën, M., Williamson, D., Şahinoğlu, M.B., Haegeman, J., Verstraete, F.: Anyons and matrix product operator algebras. Ann. Phys. 378, 183–233 (2017)

ADS  MathSciNet  Google Scholar 

Böhm, G., Nill, F., Szlachányi, K.: Weak Hopf algebras. I. Integral theory and \(C^*\)-structure. J. Algebra 221(2), 385–438 (1999)

MathSciNet  Google Scholar 

Bratteli, O., Robinson, D.: Operator algebras and quantum statistical mechanics. 1. In: Texts and Monographs in Physics. Springer-Verlag, New York, (2nd edn), 1987. \(C^\ast \)- and \(W^\ast \)-algebras, symmetry groups, decomposition of states

Bratteli, O., Robinson, D.: Operator algebras and quantum statistical mechanics. 2. In: Texts and Monographs in Physics. Springer-Verlag, Berlin, (2nd edn), 1997. Equilibrium states. Models in quantum statistical mechanics

Bratteli, O.: Inductive limits of finite dimensional \(C^ \)-algebras. Trans. Amer. Math. Soc. 171, 195–234 (1972)

MathSciNet  Google Scholar 

Chen, X., Zheng-Cheng, G., Wen, X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010)

ADS  Google Scholar 

Chen, Q., Hernández Palomares, R., Jones, C., Penneys, D.: Q-system completion for \(\rm C^*\) 2-categories. J. Funct. Anal. 283(3), 59 (2022)

MathSciNet  Google Scholar 

Ignacio Cirac, J., Perez-Garcia, D., Schuch, N., Verstraete, F.: Matrix product unitaries: structure, symmetries, and topological invariants. J. Stat. Mech. Theory Exp. 2017(8), 083105 (2017)

MathSciNet  Google Scholar 

Effros, E.: Dimensions and \(C^ \)-algebras, volume 46. Conference board of the mathematical sciences, Washington (1981)

Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. In: Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)

Evans, D., Kawahigashi, Y.: Subfactors and mathematical physics. Bull. Amer. Math. Soc. (N. S.), 1–24. electronically published on June 1, (to appear in print) (2023)

Evans, D., Kawahigashi, Y.: Quantum symmetries on operator algebras. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1998)

Elliott, G.: On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra 38(1), 29–44 (1976)

MathSciNet  Google Scholar 

Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2002)

MathSciNet  Google Scholar 

Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quant. Topol. 1(3), 209–273 (2010)

MathSciNet  Google Scholar 

Farrelly, T.: A review of quantum cellular automata. Quantum 4, 368 (2020)

Google Scholar 

Freedman, M., Hastings, M.: Classification of quantum cellular automata. Commun. Math. Phys. 376, 06 (2020)

MathSciNet  Google Scholar 

Freedman, M., Haah, J., Hastings, M.: The group structure of quantum cellular automata. Commun. Math. Phys. 389, 1277–1302 (2019)

ADS  MathSciNet  Google Scholar 

Fidkowski, L., Po, H.C., Potter, A., Vishwanath, A.: Interacting invariants for floquet phases of fermions in two dimensions. Phys. Rev. B 99, 085115 (2019)

ADS  Google Scholar 

Feiguin, A., Trebst, S., Ludwig, A., Troyer, M., Kitaev, A., Wang, Z., Freedman, M.: Interacting anyons in topological quantum liquids: the golden chain. Phys. Rev. Lett. 98, 160409 (2007)

ADS  Google Scholar 

Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993)

ADS  MathSciNet  Google Scholar 

Gross, D., Nesme, V., Vogts, H., Werner, R.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310, 10 (2009)

MathSciNet  Google Scholar 

Garre-Rubio, J., Lootens, L., Molnár, A.: Classifying phases protected by matrix product operator symmetries using matrix product states. Quantum 7, 927 (2023)

Google Scholar 

Gong, Z., Sünderhauf, C., Schuch, N., Ignacio Cirac, J.: Classification of matrix-product unitaries with symmetries. Phys. Rev. Lett. 124, 03 (2020)

MathSciNet  Google Scholar 

Haah, J.: Clifford quantum cellular automata: trivial group in 2D and Witt group in 3D. J. Math. Phys. 62(9), 092202 (2021)

ADS  MathSciNet  Google Scholar 

Haah, J.: Topological phases of unitary dynamics: classification in Clifford category. arXiv:2205.09141, (2022)

Haah, J.: Invertible subalgebras. Commun. Math. Phys. 403, 1–38 (2023)

MathSciNet  Google Scholar 

Haah, J., Fidkowski, L., Hastings, M.: Nontrivial quantum cellular automata in higher dimensions. Commun. Math. Phys. 398, 469–540 (2018)

ADS  MathSciNet  Google Scholar 

Huang, T.-C., Lin, Y.-H., Ohmori, K., Tachikawa, Y., Tezuka, M.: Numerical evidence for a Haagerup conformal field theory. Phys. Rev. Lett. 128, 10 (2021)

MathSciNet  Google Scholar 

Hollands, S.: Anyonic chains-\(\alpha \)-induction-CFT-defects-subfactors. Commun. Math. Phys. 399(12), 1549–1621 (2022)

ADS  MathSciNet  Google Scholar 

Inamura, K.: On lattice models of gapped phases with fusion category symmetries. J. High Energy Phys. 2022, 03 (2022)

MathSciNet  Google Scholar 

Jones, V., Morrison, S., Snyder, N.: The classification of subfactors of index at most 5. Bull. Amer. Math. Soc. (N.S.) 51(2), 277–327 (2014)

MathSciNet  Google Scholar 

Jones, C., Naaijkens, P., Penneys, D., Wallick, D.: Local topological order and boundary algebras. arXiv: 2307.12552, (2023)

Jones, V.: Index for subfactors. Invent. Math. 72, 1–26 (1983)

ADS  MathSciNet  Google Scholar 

Jones, V.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.) 12(1), 103–111 (1985)

MathSciNet  Google Scholar 

Jones, V.: In and around the origin of quantum groups. In: Prospects in Mathematical Physics, volume 437 of Contemp. Math., pp. 101–126. Amer. Math. Soc., Providence, RI, (2007)

Jones, V.: Planar algebras. N. Z. J. Math. 52, 1–107 (2021)

MathSciNet  Google Scholar 

Jones, C.: DHR bimodules and symmetric quantum cellular automata. arXiv: 2304.00068, (2023)

Vaughan, J., Vaikalathur, S. S.: Introduction to subfactors. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (1997)

Kawahigashi, Y.: A remark on matrix product operator algebras, anyons and subfactors. Lett. Math. Phys. 110(6), 1113–1122 (2020)

ADS  MathSciNet  Google Scholar 

Kawahigashi, Y.: Two-dimensional topological order and operator algebras. Int. J. Mod. Phys. B 35(8), 2130003–2616 (2021)

ADS  MathSciNet  Google Scholar 

Kawahigashi, Y.: Projector matrix product operators, anyons and higher relative commutants of subfactors. Math. Ann. (2022)

Kawahigashi, Y., Longo, R., Müger, M.: Multi-interval subfactors and modularity of representations in conformal field theory. Comm. Math. Phys. 219(3), 631–669 (2001)

ADS  MathSciNet  Google Scholar 

Lootens, L., Delcamp, C., Ortiz, G., Verstraete, F.: Dualities in one-dimensional quantum lattice models: symmetric Hamiltonians and matrix product operator intertwiners. PRX Quant. 4, 020357 (2023)

ADS  Google Scholar 

Lootens, L., Delcamp, C., Verstraete, F.: Dualities in one-dimensional quantum lattice models: topological sectors. arXiv:2211.03777, 11 (2022)

Lootens, L., Fuchs, J., Haegeman, J., Schweigert, C., Verstraete, F.: Matrix product operator symmetries and intertwiners in string-nets with domain walls. SciPost Phys. (2020)

Longo, R., Roberts, J.: A theory of dimension. K-Theory 11(02), 103–159 (1997)

MathSciNet  Google Scholar 

Molnar, A., Alarcón, A., Garre-Rubio, J., Schuch, N., Ignacio Cirac, J., Perez-Garcia, D.: Matrix product operator algebras I: representations of weak Hopf algebras and projected entangled pair states. arXiv:2204.05940, 04 (2022)

Naaijkens, P.: Quantum spin systems on infinite lattices. Lecture Notes in Physics, vol. 933, Springer, Cham, 2017. A concise introduction

Nill, F., Szlachányi, K.: Quantum chains of Hopf algebras with quantum double cosymmetry. Commun. Math. Phys. 187, 159–200 (1995)

ADS  MathSciNet  Google Scholar 

Neshveyev, S., Yamashita, M.: Categorically Morita equivalent compact quantum groups. Doc. Math. (2017)

Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, volume 136 of London Math. Soc. Lecture Note Ser., vol. 2, pp. 119–172. Cambridge Univ. Press, Cambridge, (1988)

Po, H.C., Fidkowski, L., Morimoto, T., Potter, A.C., Vishwanath, A.: Chiral floquet phases of many-body localized bosons. Phys. Rev. X 6, 041070 (2016)

Google Scholar 

Popa, S.: Classification of subfactors: the reduction to commuting squares. Invent. Math. 101, 19–43 (1990)

ADS  MathSciNet 

Comments (0)

No login
gif