Arano, Y., De Commer, K.: Torsion-freeness for fusion rings and tensor \(^*\)-categories. J. Noncommut. Geom. 13(1), 35–58 (2019)
Aasen, D., Fendley, P., Roger, M.: Dualities and degeneracies, Topological defects on the lattice (2020)
Aasen, D., Haah, J., Li, Z., Mong, R.: Measurement quantum cellular automata and anomalies in floquet codes (2023)
Aasen, D., Mong, R., Fendley, P.: Topological defects on the lattice: I. The Ising model. J. Phys. A Math. Theor. 49(35), 354001 (2016)
Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77(2), 372–378 (2011)
Arrighi, P.: An overview of quantum cellular automata. Nat. Comput. 18(4), 885–899 (2019)
Aasen, D., Wang, Z., Hastings, M.: Adiabatic paths of Hamiltonians, symmetries of topological order, and automorphism codes. Phys. Rev. B 106, 085122085122 (2022)
Buican, M., Gromov, A.: Anyonic chains, topological defects, and conformal field theory. Comm. Math. Phys. 356(3), 1017–1056 (2017)
Bischoff, M., Kawahigashi, Y., Longo, R., Rehren, K.: Tensor categories and endomorphisms of von Neumann algebras–with applications to quantum field theory. In: SpringerBriefs in Mathematical Physics, vol. 3. Springer, Cham (2015)
Bultinck, N., Mariën, M., Williamson, D., Şahinoğlu, M.B., Haegeman, J., Verstraete, F.: Anyons and matrix product operator algebras. Ann. Phys. 378, 183–233 (2017)
Böhm, G., Nill, F., Szlachányi, K.: Weak Hopf algebras. I. Integral theory and \(C^*\)-structure. J. Algebra 221(2), 385–438 (1999)
Bratteli, O., Robinson, D.: Operator algebras and quantum statistical mechanics. 1. In: Texts and Monographs in Physics. Springer-Verlag, New York, (2nd edn), 1987. \(C^\ast \)- and \(W^\ast \)-algebras, symmetry groups, decomposition of states
Bratteli, O., Robinson, D.: Operator algebras and quantum statistical mechanics. 2. In: Texts and Monographs in Physics. Springer-Verlag, Berlin, (2nd edn), 1997. Equilibrium states. Models in quantum statistical mechanics
Bratteli, O.: Inductive limits of finite dimensional \(C^ \)-algebras. Trans. Amer. Math. Soc. 171, 195–234 (1972)
Chen, X., Zheng-Cheng, G., Wen, X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010)
Chen, Q., Hernández Palomares, R., Jones, C., Penneys, D.: Q-system completion for \(\rm C^*\) 2-categories. J. Funct. Anal. 283(3), 59 (2022)
Ignacio Cirac, J., Perez-Garcia, D., Schuch, N., Verstraete, F.: Matrix product unitaries: structure, symmetries, and topological invariants. J. Stat. Mech. Theory Exp. 2017(8), 083105 (2017)
Effros, E.: Dimensions and \(C^ \)-algebras, volume 46. Conference board of the mathematical sciences, Washington (1981)
Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. In: Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)
Evans, D., Kawahigashi, Y.: Subfactors and mathematical physics. Bull. Amer. Math. Soc. (N. S.), 1–24. electronically published on June 1, (to appear in print) (2023)
Evans, D., Kawahigashi, Y.: Quantum symmetries on operator algebras. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1998)
Elliott, G.: On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra 38(1), 29–44 (1976)
Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2002)
Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quant. Topol. 1(3), 209–273 (2010)
Farrelly, T.: A review of quantum cellular automata. Quantum 4, 368 (2020)
Freedman, M., Hastings, M.: Classification of quantum cellular automata. Commun. Math. Phys. 376, 06 (2020)
Freedman, M., Haah, J., Hastings, M.: The group structure of quantum cellular automata. Commun. Math. Phys. 389, 1277–1302 (2019)
Fidkowski, L., Po, H.C., Potter, A., Vishwanath, A.: Interacting invariants for floquet phases of fermions in two dimensions. Phys. Rev. B 99, 085115 (2019)
Feiguin, A., Trebst, S., Ludwig, A., Troyer, M., Kitaev, A., Wang, Z., Freedman, M.: Interacting anyons in topological quantum liquids: the golden chain. Phys. Rev. Lett. 98, 160409 (2007)
Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993)
Gross, D., Nesme, V., Vogts, H., Werner, R.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310, 10 (2009)
Garre-Rubio, J., Lootens, L., Molnár, A.: Classifying phases protected by matrix product operator symmetries using matrix product states. Quantum 7, 927 (2023)
Gong, Z., Sünderhauf, C., Schuch, N., Ignacio Cirac, J.: Classification of matrix-product unitaries with symmetries. Phys. Rev. Lett. 124, 03 (2020)
Haah, J.: Clifford quantum cellular automata: trivial group in 2D and Witt group in 3D. J. Math. Phys. 62(9), 092202 (2021)
Haah, J.: Topological phases of unitary dynamics: classification in Clifford category. arXiv:2205.09141, (2022)
Haah, J.: Invertible subalgebras. Commun. Math. Phys. 403, 1–38 (2023)
Haah, J., Fidkowski, L., Hastings, M.: Nontrivial quantum cellular automata in higher dimensions. Commun. Math. Phys. 398, 469–540 (2018)
Huang, T.-C., Lin, Y.-H., Ohmori, K., Tachikawa, Y., Tezuka, M.: Numerical evidence for a Haagerup conformal field theory. Phys. Rev. Lett. 128, 10 (2021)
Hollands, S.: Anyonic chains-\(\alpha \)-induction-CFT-defects-subfactors. Commun. Math. Phys. 399(12), 1549–1621 (2022)
Inamura, K.: On lattice models of gapped phases with fusion category symmetries. J. High Energy Phys. 2022, 03 (2022)
Jones, V., Morrison, S., Snyder, N.: The classification of subfactors of index at most 5. Bull. Amer. Math. Soc. (N.S.) 51(2), 277–327 (2014)
Jones, C., Naaijkens, P., Penneys, D., Wallick, D.: Local topological order and boundary algebras. arXiv: 2307.12552, (2023)
Jones, V.: Index for subfactors. Invent. Math. 72, 1–26 (1983)
Jones, V.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.) 12(1), 103–111 (1985)
Jones, V.: In and around the origin of quantum groups. In: Prospects in Mathematical Physics, volume 437 of Contemp. Math., pp. 101–126. Amer. Math. Soc., Providence, RI, (2007)
Jones, V.: Planar algebras. N. Z. J. Math. 52, 1–107 (2021)
Jones, C.: DHR bimodules and symmetric quantum cellular automata. arXiv: 2304.00068, (2023)
Vaughan, J., Vaikalathur, S. S.: Introduction to subfactors. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (1997)
Kawahigashi, Y.: A remark on matrix product operator algebras, anyons and subfactors. Lett. Math. Phys. 110(6), 1113–1122 (2020)
Kawahigashi, Y.: Two-dimensional topological order and operator algebras. Int. J. Mod. Phys. B 35(8), 2130003–2616 (2021)
Kawahigashi, Y.: Projector matrix product operators, anyons and higher relative commutants of subfactors. Math. Ann. (2022)
Kawahigashi, Y., Longo, R., Müger, M.: Multi-interval subfactors and modularity of representations in conformal field theory. Comm. Math. Phys. 219(3), 631–669 (2001)
Lootens, L., Delcamp, C., Ortiz, G., Verstraete, F.: Dualities in one-dimensional quantum lattice models: symmetric Hamiltonians and matrix product operator intertwiners. PRX Quant. 4, 020357 (2023)
Lootens, L., Delcamp, C., Verstraete, F.: Dualities in one-dimensional quantum lattice models: topological sectors. arXiv:2211.03777, 11 (2022)
Lootens, L., Fuchs, J., Haegeman, J., Schweigert, C., Verstraete, F.: Matrix product operator symmetries and intertwiners in string-nets with domain walls. SciPost Phys. (2020)
Longo, R., Roberts, J.: A theory of dimension. K-Theory 11(02), 103–159 (1997)
Molnar, A., Alarcón, A., Garre-Rubio, J., Schuch, N., Ignacio Cirac, J., Perez-Garcia, D.: Matrix product operator algebras I: representations of weak Hopf algebras and projected entangled pair states. arXiv:2204.05940, 04 (2022)
Naaijkens, P.: Quantum spin systems on infinite lattices. Lecture Notes in Physics, vol. 933, Springer, Cham, 2017. A concise introduction
Nill, F., Szlachányi, K.: Quantum chains of Hopf algebras with quantum double cosymmetry. Commun. Math. Phys. 187, 159–200 (1995)
Neshveyev, S., Yamashita, M.: Categorically Morita equivalent compact quantum groups. Doc. Math. (2017)
Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, volume 136 of London Math. Soc. Lecture Note Ser., vol. 2, pp. 119–172. Cambridge Univ. Press, Cambridge, (1988)
Po, H.C., Fidkowski, L., Morimoto, T., Potter, A.C., Vishwanath, A.: Chiral floquet phases of many-body localized bosons. Phys. Rev. X 6, 041070 (2016)
Popa, S.: Classification of subfactors: the reduction to commuting squares. Invent. Math. 101, 19–43 (1990)
Comments (0)