Circadian Clock Gene bmal1 Acts as a Tumor Suppressor Gene in a Mice Model of Human Glioblastoma

Omuro A, De Angelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA - J Am Med Assoc. https://doi.org/10.1001/jama.2013.280319

Article  Google Scholar 

Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. https://doi.org/10.1016/j.ccr.2006.02.019

Article  PubMed  Google Scholar 

Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

Article  CAS  PubMed  Google Scholar 

Golombek DA, Rosenstein RE (2010) Physiology of Circadian Entrainment. Physiol Rev. https://doi.org/10.1152/physrev.00009.2009

Article  PubMed  Google Scholar 

Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19(8):453–469. https://doi.org/10.1038/s41583-018-0026-z

Article  CAS  PubMed  Google Scholar 

Takahashi JS (2015) Molecular components of the circadian clock in mammals. Diabetes Obes Metab 17(Suppl 1):6–11. https://doi.org/10.1111/dom.12514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bunger MK et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017. https://doi.org/10.1016/s0092-8674(00)00205-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C et al (2022) Circadian clock gene BMAL1 inhibits the proliferation and tumor-formation ability of nasopharyngeal carcinoma cells and increases the sensitivity of radiotherapy. Chronobiol Int 39(10):1340–1351. https://doi.org/10.1080/07420528.2022.2105708

Article  CAS  PubMed  Google Scholar 

Jiang W et al (2016) The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett 371(2):314–325. https://doi.org/10.1016/j.canlet.2015.12.002

Article  CAS  PubMed  Google Scholar 

Qu M et al (2023) Circadian regulator BMAL1: CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc Natl Acad Sci U S A 120(2):e2214829120. https://doi.org/10.1073/pnas.2214829120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J et al (2019) Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int 19:182. https://doi.org/10.1186/s12935-019-0902-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong P et al (2022) BMAL1 induces colorectal cancer metastasis by stimulating exosome secretion. Mol Biol Rep 49(1):373–384. https://doi.org/10.1007/s11033-021-06883-z

Article  CAS  PubMed  Google Scholar 

Wang D et al (2023) Identification and characterization of the CDK1-BMAL1-UHRF1 pathway driving tumor progression. iScience 26(4):106544. https://doi.org/10.1016/j.isci.2023.106544

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masri S, Cervantes M, Sassone-Corsi P (2013) The circadian clock and cell cycle: interconnected biological circuits. Curr Opin Cell Biol 25(6):730–734. https://doi.org/10.1016/j.ceb.2013.07.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu XJ et al (2016) The important tumor suppressor role of PER1 in regulating the cyclin–CDK–CKI network in SCC15 human oral squamous cell carcinoma cells. Onco Targets Ther https://doi.org/10.2147/OTT.S100952

Gery S et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382

Article  CAS  PubMed  Google Scholar 

Chen ST et al (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis https://doi.org/10.1093/carcin/bgi075

Zhao H et al (2014) Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int J Clin Exp Pathol 7(2):619–30

Hsu CM et al (2012) Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumor Biol 33(1):149–55. https://doi.org/10.1007/s13277-011-0258-2

Farshadi E et al (2019) The positive circadian regulators CLOCK and BMAL1 control G2/M cell cycle transition through Cyclin B1. Cell Cycle 18(1):16–33. https://doi.org/10.1080/15384101.2018.1558638

Matsuo T et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–9. https://doi.org/10.1126/science.1086271

Gwon DH et al (2020) BMAL1 suppresses proliferation, migration, and invasion of U87MG cells by downregulating cyclin B1, Phospho-AKT, and Metalloproteinase-9. Int J Mol Sci 21(7):2352. https://doi.org/10.3390/ijms21072352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung CH et al (2013) Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep 29(6):2109–2113. https://doi.org/10.3892/or.2013.2381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner PM et al (2021) Temporal regulation of tumor growth in nocturnal mammals: in vivo studies and chemotherapeutical potential. FASEB J 35(2):e21231. https://doi.org/10.1096/fj.202001753R

Article  CAS  PubMed  Google Scholar 

Dong Z et al (2019) Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov 9(11):1556–1573. https://doi.org/10.1158/2159-8290.CD-19-0215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pang L et al (2023) Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep 42(2):112127. https://doi.org/10.1016/j.celrep.2023.112127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xuan W et al (2022) Circadian Regulator CLOCK Drives Immunosuppression in Glioblastoma. Cancer Immunol Res 10(6):770–784. https://doi.org/10.1158/2326-6066.CIR-21-0559

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filipski E et al (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64(21):7879–7885

Article  CAS  PubMed  Google Scholar 

Aiello I et al (2020) Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci Adv. 6(42):eaaz4530. https://doi.org/10.1126/sciadv

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadadi E et al (2020) Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nat Commun 11(1):3193. https://doi.org/10.1038/s41467-020-16890-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner PM et al (2019) Proliferative glioblastoma cancer cells exhibit persisting temporal control of metabolism and display differential temporal drug susceptibility in chemotherapy. Mol Neurobiol 56(2):1276–1292. https://doi.org/10.1007/s12035-018-1152-3

Article  CAS  PubMed  Google Scholar 

Trebucq LL et al (2021) Timing of novel Drug 1A–116 to circadian rhythms improves therapeutic effects against glioblastoma. Pharmaceutics 13(7):1091. https://doi.org/10.3390/pharmaceutics13071091

Article  CAS  PubMed 

Comments (0)

No login
gif