Van Schependom J, D’haeseleer M (2023) Advances in neurodegenerative diseases. J Clin Med. 12(5):1709. https://doi.org/10.3390/jcm12051709
Article PubMed PubMed Central Google Scholar
Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H (2023) Neurodegenerative disorders: assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton) 6(1):82–97
Alzheimer’s disease facts and figures (2023) Alzheimers Dement 19(4):1598–1695
Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC (2016) Neurodegeneration and Alzheime’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol Cell Proteomics. 15(2):409–25
Article CAS PubMed Google Scholar
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J (2023) Microglia in Alzheimer’s disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 15(15):1201982. https://doi.org/10.3389/fnagi.2023.1201982
Article CAS PubMed PubMed Central Google Scholar
Rather MA, Khan A, Wang L, Jahan S, Rehman MU, Makeen HA, Mohan S (2023) TRP channels: role in neurodegenerative diseases and therapeutic targets. Heliyon 9(6):e16910. https://doi.org/10.1016/j.heliyon.2023.e16910
Article CAS PubMed PubMed Central Google Scholar
Abe K, Puertollano R (2011) Role of TRP channels in the regulation of the endosomal pathway. Physiology (Bethesda) 26(1):14–22
Grimm C, Butz E, Chen CC, Wahl-Schott C, Biel M (2017) From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium 67:148–155
Article CAS PubMed Google Scholar
Zhang S, Li N, Zeng W, Gao N, Yang M (2017) Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell 8(11):834–847
Article CAS PubMed PubMed Central Google Scholar
Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, Jiang Y (2017) Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550(7676):415–418
Article CAS PubMed PubMed Central Google Scholar
Gan N, Han Y, Zeng W, Wang Y, Xue J, Jiang Y (2022) Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P2 and rapamycin. Proc Natl Acad Sci U S A 119(7):e2120404119
Article CAS PubMed PubMed Central Google Scholar
Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, Zhang J (2022) Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J Biol Chem 298(2):101487
Article CAS PubMed Google Scholar
Xu T, Gan Q, Wu B, Yin M, Xu J, Shu X, Liu J (2020) Molecular basis for PI(3,5)P2 recognition by SNX11, a protein involved in lysosomal degradation and endosome homeostasis regulation. J Mol Biol 432(16):4750–4761
Article CAS PubMed Google Scholar
Hu H, Bandell M, Grandl J, Petrus M (2011) High-throughput approaches to studying mechanisms of TRP channel activation. In: Zhu MX (ed) TRP channels, chap 12. CRC Press/Taylor & Francis, Boca Raton, FL
Prat Castro S, Kudrina V, Jaślan D, Böck J, Scotto Rosato A, Grimm C (2022) Neurodegenerative lysosomal storage disorders: TPC2 comes to the rescue! Cells 11(18):2807
Article CAS PubMed PubMed Central Google Scholar
Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y (2007) Transient receptor potential channels in Alzheimer’s disease. Biochim Biophys Acta 1772(8):958–967
Article CAS PubMed Google Scholar
Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S (2012) Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J Biol Chem 287(27):22701–22708
Article CAS PubMed PubMed Central Google Scholar
Faris P, Shekha M, Montagna D, Guerra G, Moccia F (2018) Endolysosomal Ca2+ signalling and cancer hallmarks: two-pore channels on the move, TRPML1 lags behind! Cancers (Basel) 11(1):27
Viet KK, Wagner A, Schwickert K, Hellwig N, Brennich M, Bader N, Schirmeister T, Morgner N, Schindelin H, Hellmich UA (2019) Structure of the human TRPML2 ion channel extracytosolic/lumenal domain. Structure 27(8):1246-1257.e5
Article CAS PubMed Google Scholar
Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001(90):1
Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218
Article CAS PubMed PubMed Central Google Scholar
Patel S (2016) Deviant lysosomal Ca2+ signalling in neurodegeneration. An Introduction Messenger (Los Angel) 5(1–2):24–29
Fine M, Li X, Dang S (2020) Structural insights into group II TRP channels. Cell Calcium 86:102107. https://doi.org/10.1016/j.ceca.2019.102107
Article CAS PubMed Google Scholar
Xia Z, Ren Y, Li S, Xu J, Wu Y, Cao Z (2021) ML-SA1 and SN-2 inhibit endocytosed viruses through regulating TRPML channel expression and activity. Antiviral Res 195:105193
Article CAS PubMed Google Scholar
Xia Z, Wang L, Li S, Tang W, Sun F, Wu Y, Miao L, Cao Z (2020) ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity. Antiviral Res 182:104922
Article CAS PubMed Google Scholar
Subramanian J, Savage JC, Tremblay MÈ (2020) Synaptic loss in Alzheimer’s disease: mechanistic insights provided by two-photon in vivo Imaging of transgenic mouse models. Front Cell Neurosci 17(14):592607
Puertollano R, Kiselyov K (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol 296(6):F1245–F1254
Article CAS PubMed PubMed Central Google Scholar
Wong CO, Li R, Montell C, Venkatachalam K (2012) Drosophila TRPML is required for TORC1 activation. Curr Biol 22(17):1616–1621
Article CAS PubMed PubMed Central Google Scholar
Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275(8):5626–32
Article CAS PubMed Google Scholar
McDaid J, Mustaly-Kalimi S, Stutzmann GE (2020) Ca2+ dyshomeostasis disrupts neuronal and synaptic function in Alzheimer’s disease. Cells 9(12):2655
Article CAS PubMed PubMed Central Google Scholar
Zhao J, Yu L, Xue X, Xu Y, Huang T, Xu D, Wang Z, Luo L, Wang H (2023) Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKII/MAPK/AP-1 axis-mediated mitochondrial oxidative stress. Redox Biol 59:102594
Comments (0)