Mutation of TRPML1 Channel and Pathogenesis of Neurodegeneration in Haimeria

Van Schependom J, D’haeseleer M (2023) Advances in neurodegenerative diseases. J Clin Med. 12(5):1709. https://doi.org/10.3390/jcm12051709

Article  PubMed  PubMed Central  Google Scholar 

Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H (2023) Neurodegenerative disorders: assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton) 6(1):82–97

Article  PubMed  Google Scholar 

Alzheimer’s disease facts and figures (2023) Alzheimers Dement 19(4):1598–1695

Article  Google Scholar 

Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC (2016) Neurodegeneration and Alzheime’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol Cell Proteomics. 15(2):409–25

Article  CAS  PubMed  Google Scholar 

Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J (2023) Microglia in Alzheimer’s disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 15(15):1201982. https://doi.org/10.3389/fnagi.2023.1201982

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rather MA, Khan A, Wang L, Jahan S, Rehman MU, Makeen HA, Mohan S (2023) TRP channels: role in neurodegenerative diseases and therapeutic targets. Heliyon 9(6):e16910. https://doi.org/10.1016/j.heliyon.2023.e16910

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abe K, Puertollano R (2011) Role of TRP channels in the regulation of the endosomal pathway. Physiology (Bethesda) 26(1):14–22

CAS  PubMed  Google Scholar 

Grimm C, Butz E, Chen CC, Wahl-Schott C, Biel M (2017) From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium 67:148–155

Article  CAS  PubMed  Google Scholar 

Zhang S, Li N, Zeng W, Gao N, Yang M (2017) Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell 8(11):834–847

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, Jiang Y (2017) Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550(7676):415–418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gan N, Han Y, Zeng W, Wang Y, Xue J, Jiang Y (2022) Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P2 and rapamycin. Proc Natl Acad Sci U S A 119(7):e2120404119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, Zhang J (2022) Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J Biol Chem 298(2):101487

Article  CAS  PubMed  Google Scholar 

Xu T, Gan Q, Wu B, Yin M, Xu J, Shu X, Liu J (2020) Molecular basis for PI(3,5)P2 recognition by SNX11, a protein involved in lysosomal degradation and endosome homeostasis regulation. J Mol Biol 432(16):4750–4761

Article  CAS  PubMed  Google Scholar 

Hu H, Bandell M, Grandl J, Petrus M (2011) High-throughput approaches to studying mechanisms of TRP channel activation. In: Zhu MX (ed) TRP channels, chap 12. CRC Press/Taylor & Francis, Boca Raton, FL

Prat Castro S, Kudrina V, Jaślan D, Böck J, Scotto Rosato A, Grimm C (2022) Neurodegenerative lysosomal storage disorders: TPC2 comes to the rescue! Cells 11(18):2807

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y (2007) Transient receptor potential channels in Alzheimer’s disease. Biochim Biophys Acta 1772(8):958–967

Article  CAS  PubMed  Google Scholar 

Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S (2012) Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J Biol Chem 287(27):22701–22708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faris P, Shekha M, Montagna D, Guerra G, Moccia F (2018) Endolysosomal Ca2+ signalling and cancer hallmarks: two-pore channels on the move, TRPML1 lags behind! Cancers (Basel) 11(1):27

Article  PubMed  Google Scholar 

Viet KK, Wagner A, Schwickert K, Hellwig N, Brennich M, Bader N, Schirmeister T, Morgner N, Schindelin H, Hellmich UA (2019) Structure of the human TRPML2 ion channel extracytosolic/lumenal domain. Structure 27(8):1246-1257.e5

Article  CAS  PubMed  Google Scholar 

Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001(90):1

Article  Google Scholar 

Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel S (2016) Deviant lysosomal Ca2+ signalling in neurodegeneration. An Introduction Messenger (Los Angel) 5(1–2):24–29

PubMed  Google Scholar 

Fine M, Li X, Dang S (2020) Structural insights into group II TRP channels. Cell Calcium 86:102107. https://doi.org/10.1016/j.ceca.2019.102107

Article  CAS  PubMed  Google Scholar 

Xia Z, Ren Y, Li S, Xu J, Wu Y, Cao Z (2021) ML-SA1 and SN-2 inhibit endocytosed viruses through regulating TRPML channel expression and activity. Antiviral Res 195:105193

Article  CAS  PubMed  Google Scholar 

Xia Z, Wang L, Li S, Tang W, Sun F, Wu Y, Miao L, Cao Z (2020) ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity. Antiviral Res 182:104922

Article  CAS  PubMed  Google Scholar 

Subramanian J, Savage JC, Tremblay MÈ (2020) Synaptic loss in Alzheimer’s disease: mechanistic insights provided by two-photon in vivo Imaging of transgenic mouse models. Front Cell Neurosci 17(14):592607

Article  Google Scholar 

Puertollano R, Kiselyov K (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol 296(6):F1245–F1254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong CO, Li R, Montell C, Venkatachalam K (2012) Drosophila TRPML is required for TORC1 activation. Curr Biol 22(17):1616–1621

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275(8):5626–32

Article  CAS  PubMed  Google Scholar 

McDaid J, Mustaly-Kalimi S, Stutzmann GE (2020) Ca2+ dyshomeostasis disrupts neuronal and synaptic function in Alzheimer’s disease. Cells 9(12):2655

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao J, Yu L, Xue X, Xu Y, Huang T, Xu D, Wang Z, Luo L, Wang H (2023) Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKII/MAPK/AP-1 axis-mediated mitochondrial oxidative stress. Redox Biol 59:102594

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif