Shortening and Personalizing Psychodiagnostic Assessments with Decision Tree-Machine Learning Classifiers: An Application Example Based on the Patient Health Questionnaire-9

Achenbach, T. M. (2000). Assessment of psychopathology. In A. J. Sameroff, M. Lewis, & S. M. Miller (Eds.), Handbook of developmental psychopathology (pp. 41–56). Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-4163-9_3

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238

Article  CAS  PubMed  Google Scholar 

Bentler, P. M. (1995). EQS structural equations program manual (Vol. 6). Encino, CA: Multivariate Software, Inc.

Bianchi, R., Verkuilen, J., Toker, S., Schonfeld, I. S., Gerber, M., Brähler, E., & Kroenke, K. (2022). Is the PHQ-9 a unidimensional measure of depression? A 58,272-participant study. Psychological Assessment, 34(6), 595. https://doi.org/10.1037/pas0001124

Article  PubMed  Google Scholar 

Blazer, D. G., Kessler, R. C., McGonagle, K. A., & Swartz, M. S. (1994). The prevalence and distribution of major depression in a national community sample: The National Comorbidity Survey. The American Journal of Psychiatry, 151(7), 979–986. https://doi.org/10.1176/ajp.151.7.979

Article  CAS  PubMed  Google Scholar 

Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. (1984). Classification and regression trees. Pacific Grove: Wadsworth & Brooks.

Google Scholar 

Brodaty, H., Cullen, B., Thompson, C., Mitchell, P., Parker, G., Wilhelm, K., ... & Malhi, G. (2005). Age and gender in the phenomenology of depression. The American Journal of Geriatric Psychiatry, 13(7), 589−596. https://doi.org/10.1097/00019442-200507000-00007

Brown, T. A. (2006). Confirmatory factor analysis for applied research. Guilford Press.

Google Scholar 

Brown, J. M., & Weiss, D. J. (1977). An adaptive testing strategy for achievement test batteries (Research Report 77–6). Minn, University of Minnesota, Computerized Adaptive Testing Laboratory.

Google Scholar 

Brown, L. S. (1986). Gender-role analysis: A neglected component of psychological assessment. Psychotherapy: Theory, Research, Practice, Training, 23(2), 243–248.

Article  Google Scholar 

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Sage.

Google Scholar 

Caruana, R., & Freitag, D. (1994). Greedy attribute selection. In Proceedings of the Eleventh International Conference on International Conference on Machine Learning (pp. 28−36). Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-335-6.50012-X

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834

Article  Google Scholar 

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. https://doi.org/10.1207/S15328007SEM0902_5

Article  Google Scholar 

Clark, L. A., McEwen, J. L., Collard, L. M., & Hickok, L. G. (1993). Symptoms and traits of personality disorder: Two new methods for their assessment. Psychological Assessment, 5(1), 81–91. https://doi.org/10.1037/1040-3590.5.1.81

Article  Google Scholar 

Colledani, D. (2018). Psychometric properties and gender invariance for the Dickman Impulsivity Inventory. TPM-Testing, Psychometrics, Methodology in Applied Psychology, 25(1), 49–61. https://doi.org/10.4473/TPM25.1.3

Article  Google Scholar 

Colledani, D., Anselmi, P., & Robusto, E. (2018). Using item response theory for the development of a new short form of the Eysenck Personality Questionnaire-Revised. Frontiers in Psychology, 9, 1834. https://doi.org/10.3389/fpsyg.2018.01834

Article  PubMed  PubMed Central  Google Scholar 

Colledani, D., Anselmi, P., & Robusto, E. (2019). Using multidimensional item response theory to develop an abbreviated form of the Italian version of Eysenck’s IVE questionnaire. Personality and Individual Differences, 142, 45–52. https://doi.org/10.1016/j.paid.2019.01.032

Article  Google Scholar 

Colledani, D., Meneghini, A. M., Mikulincer, M., & Shaver, P. R. (2022). The Caregiving System Scale: Factor structure, gender invariance, and the contribution of attachment orientations. European Journal of Psychological Assessment, 38(5), 385–396. https://doi.org/10.1027/1015-5759/a000673

Article  Google Scholar 

Colledani, D., Anselmi, P., & Robusto, E. (2023). Machine learning-decision tree classifiers in psychiatric assessment: An application to the diagnosis of major depressive disorder. Psychiatry Research, 322, 115127. https://doi.org/10.1016/j.psychres.2023.115127

Costantini, L., Pasquarella, C., Odone, A., Colucci, M. E., Costanza, A., Serafini, G., ... & Amerio, A. (2021). Screening for depression in primary care with Patient Health Questionnaire-9 (PHQ-9): A systematic review. Journal of Affective Disorders, 279, 473−483. https://doi.org/10.1016/j.jad.2020.09.131

Criminisi, A., Shotton, J., & Konukoglu, E. (2012). Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends® in Computer Graphics and Vision, 7(2–3), 81–227. https://doi.org/10.1561/0600000035

Article  Google Scholar 

Cumming, G. (2008). Replication and p intervals: P values predict the future only vaguely, but confidence intervals do much better. Perspectives on Psychological Science, 3(4), 286–300. https://doi.org/10.1111/j.1745-6924.2008.00079.x

Article  PubMed  Google Scholar 

De Beurs, D. P., de Vries, A. L., de Groot, M. H., de Keijser, J., & Kerkhof, A. J. (2014). Applying computer adaptive testing to optimize online assessment of suicidal behavior: A simulation study. Journal of Medical Internet Research, 16(9), e207. https://doi.org/10.2196/jmir.3511

Article  PubMed  PubMed Central  Google Scholar 

Dekker, G. W., Pechenizkiy, M. & Vleeshouwers, J. M. (2009, July 1−3). Predicting students drop out: A case study. EDM’09 - Educational Data Mining 2009: 2nd International Conference on Educational Data Mining, Cordoba, Spain.

Delgado-Gomez, D., Baca-Garcia, E., Aguado, D., Courtet, P., & Lopez-Castroman, J. (2016). Computerized adaptive test vs. decision trees: Development of a support decision system to identify suicidal behavior. Journal of Affective Disorders, 206, 204–209. https://doi.org/10.1016/j.jad.2016.07.032

Article  CAS  PubMed  Google Scholar 

Delgado-Gomez, D., Laria, J. C., & Ruiz-Hernandez, D. (2019). Computerized adaptive test and decision trees: A unifying approach. Expert Systems with Applications, 117, 358–366. https://doi.org/10.1016/j.eswa.2018.09.052

Article  Google Scholar 

Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in Finance (Vol. 1170). New York, NY: Springer International Publishing.

Doi, S., Ito, M., Takebayashi, Y., Muramatsu, K., & Horikoshi, M. (2018). Factorial validity and invariance of the Patient Health Questionnaire (PHQ)-9 among clinical and non-clinical populations. PLoS ONE, 13(7), e0199235. https://doi.org/10.1371/journal.pone.0199235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91–118. https://doi.org/10.1146/annurev-clinpsy-032816-045037

Article  PubMed  Google Scholar 

Dzyabura, D., & Yoganarasimhan, H. (2018). Machine learning and marketing. In N. Mizik & D. M. Hanssens (Eds.), Handbook of marketing analytics (pp. 255–279). Edward Elgar Publishing.

Google Scholar 

Eggen, T. J. H. M., & Straetmans, G. J. J. M. (2000). Computerized adaptive testing for classifying examinees into three categories. Educational and Psychological Measurement, 60(5), 713–734. https://doi.org/10.1177/0013164002197086

Article  Google Scholar 

Fliege, H., Becker, J., Walter, O. B., Bjorner, J. B., Klapp, B. F., & Rose, M. (2005). Development of a computer-adaptive test for depression (D-CAT). Quality of Life Research, 14, 2277–2291. https://doi.org/10.1007/s11136-005-6651-9

Article  PubMed  Google Scholar 

Gibbons, R. D., Weiss, D. J., Kupfer, D. J., Frank, E., Fagiolini, A., Grochocinski, V. J., ... & Immekus, J. C. (2008). Using computerized adaptive testing to reduce the burden of mental health assessment. Psychiatric Services, 59(4), 361−368. https://doi.org/10.1176/ps.2008.59.4.361

Gibbons, R. D., Hooker, G., Finkelman, M. D., Weiss, D. J., Pilkonis, P. A., Frank, E., ... & Kupfer, D. J. (2013). The computerized adaptive diagnostic test for major depressive disorder (CAD-MDD): a screening tool for depression. The Journal of Clinical Psychiatry, 74(7), 3579. https://doi.org/10.4088/JCP.12m08338

Gilbody, S., Richards, D., Brealey, S., & Hewitt, C. (2007). Screening for depression in medical settings with the Patient Health Questionnaire (PHQ): A diagnostic meta-analysis. Journal of General Internal Medicine, 22(11), 1596–1602. https://doi.org/10.1007/s11606-007-0333-y

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez, O. (2021a). Psychometric and machine learning approaches for diagnostic assessment and tests of individual classification. Psychological Methods, 26(2), 236–254. https://doi.org/10.1037/met0000317

Article  Google Scholar 

Gonzalez, O. (2021b). Psychometric and machine learning approaches to reduce the length of scales. Multivariate Behavioral Research, 56(6), 903–919. https://doi.org/10.1080/00273171.2020.1781585

Article  PubMed  Google Scholar 

Gupta, B., Rawat, A., Jain, A., Arora, A., & Dhami, N. (2017). Analysis of various decision tree algorithms for classification in data mining. International Journal of Computer Applications, 163(8), 15–19. https://doi.org/10.5120/ijca2017913660

Article  Google Scholar 

Hamilton, L. S. (1999). Detecting gender-based differential item functioning on a constructed-response science test. Applied Measurement in Education, 12(3), 211–235. https://doi.org/10.1207/S15324818AME1203_1

Article  Google Scholar 

Hartung, C. M., & Lefler, E. K. (2019). Sex and gender in psychopathology: DSM–5 and beyond. Psychological Bulletin, 145(4), 390–409. https://doi.org/10.1037/bul0000183

Article  PubMed  Google Scholar 

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Vol. 2). Springer.

Hathaway, S. R., & McKinley, J. C. (1989). MMPI-2: Minnesota Multiphasic Personality Inventory-2: Manual for administration and scoring. University of Minnesota Press.

Google Scholar 

Higa, A. (2018). Diagnosis of breast cancer using decision tree and artificial neural network algorithms. International Journal of Computer Applications Technology and Research, 1(7), 23–27. https://doi.org/10.7753/ijcatr0701.1004

Article 

Comments (0)

No login
gif