Achenbach, T. M. (2000). Assessment of psychopathology. In A. J. Sameroff, M. Lewis, & S. M. Miller (Eds.), Handbook of developmental psychopathology (pp. 41–56). Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-4163-9_3
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238
Article CAS PubMed Google Scholar
Bentler, P. M. (1995). EQS structural equations program manual (Vol. 6). Encino, CA: Multivariate Software, Inc.
Bianchi, R., Verkuilen, J., Toker, S., Schonfeld, I. S., Gerber, M., Brähler, E., & Kroenke, K. (2022). Is the PHQ-9 a unidimensional measure of depression? A 58,272-participant study. Psychological Assessment, 34(6), 595. https://doi.org/10.1037/pas0001124
Blazer, D. G., Kessler, R. C., McGonagle, K. A., & Swartz, M. S. (1994). The prevalence and distribution of major depression in a national community sample: The National Comorbidity Survey. The American Journal of Psychiatry, 151(7), 979–986. https://doi.org/10.1176/ajp.151.7.979
Article CAS PubMed Google Scholar
Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. (1984). Classification and regression trees. Pacific Grove: Wadsworth & Brooks.
Brodaty, H., Cullen, B., Thompson, C., Mitchell, P., Parker, G., Wilhelm, K., ... & Malhi, G. (2005). Age and gender in the phenomenology of depression. The American Journal of Geriatric Psychiatry, 13(7), 589−596. https://doi.org/10.1097/00019442-200507000-00007
Brown, T. A. (2006). Confirmatory factor analysis for applied research. Guilford Press.
Brown, J. M., & Weiss, D. J. (1977). An adaptive testing strategy for achievement test batteries (Research Report 77–6). Minn, University of Minnesota, Computerized Adaptive Testing Laboratory.
Brown, L. S. (1986). Gender-role analysis: A neglected component of psychological assessment. Psychotherapy: Theory, Research, Practice, Training, 23(2), 243–248.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Sage.
Caruana, R., & Freitag, D. (1994). Greedy attribute selection. In Proceedings of the Eleventh International Conference on International Conference on Machine Learning (pp. 28−36). Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-335-6.50012-X
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. https://doi.org/10.1207/S15328007SEM0902_5
Clark, L. A., McEwen, J. L., Collard, L. M., & Hickok, L. G. (1993). Symptoms and traits of personality disorder: Two new methods for their assessment. Psychological Assessment, 5(1), 81–91. https://doi.org/10.1037/1040-3590.5.1.81
Colledani, D. (2018). Psychometric properties and gender invariance for the Dickman Impulsivity Inventory. TPM-Testing, Psychometrics, Methodology in Applied Psychology, 25(1), 49–61. https://doi.org/10.4473/TPM25.1.3
Colledani, D., Anselmi, P., & Robusto, E. (2018). Using item response theory for the development of a new short form of the Eysenck Personality Questionnaire-Revised. Frontiers in Psychology, 9, 1834. https://doi.org/10.3389/fpsyg.2018.01834
Article PubMed PubMed Central Google Scholar
Colledani, D., Anselmi, P., & Robusto, E. (2019). Using multidimensional item response theory to develop an abbreviated form of the Italian version of Eysenck’s IVE questionnaire. Personality and Individual Differences, 142, 45–52. https://doi.org/10.1016/j.paid.2019.01.032
Colledani, D., Meneghini, A. M., Mikulincer, M., & Shaver, P. R. (2022). The Caregiving System Scale: Factor structure, gender invariance, and the contribution of attachment orientations. European Journal of Psychological Assessment, 38(5), 385–396. https://doi.org/10.1027/1015-5759/a000673
Colledani, D., Anselmi, P., & Robusto, E. (2023). Machine learning-decision tree classifiers in psychiatric assessment: An application to the diagnosis of major depressive disorder. Psychiatry Research, 322, 115127. https://doi.org/10.1016/j.psychres.2023.115127
Costantini, L., Pasquarella, C., Odone, A., Colucci, M. E., Costanza, A., Serafini, G., ... & Amerio, A. (2021). Screening for depression in primary care with Patient Health Questionnaire-9 (PHQ-9): A systematic review. Journal of Affective Disorders, 279, 473−483. https://doi.org/10.1016/j.jad.2020.09.131
Criminisi, A., Shotton, J., & Konukoglu, E. (2012). Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends® in Computer Graphics and Vision, 7(2–3), 81–227. https://doi.org/10.1561/0600000035
Cumming, G. (2008). Replication and p intervals: P values predict the future only vaguely, but confidence intervals do much better. Perspectives on Psychological Science, 3(4), 286–300. https://doi.org/10.1111/j.1745-6924.2008.00079.x
De Beurs, D. P., de Vries, A. L., de Groot, M. H., de Keijser, J., & Kerkhof, A. J. (2014). Applying computer adaptive testing to optimize online assessment of suicidal behavior: A simulation study. Journal of Medical Internet Research, 16(9), e207. https://doi.org/10.2196/jmir.3511
Article PubMed PubMed Central Google Scholar
Dekker, G. W., Pechenizkiy, M. & Vleeshouwers, J. M. (2009, July 1−3). Predicting students drop out: A case study. EDM’09 - Educational Data Mining 2009: 2nd International Conference on Educational Data Mining, Cordoba, Spain.
Delgado-Gomez, D., Baca-Garcia, E., Aguado, D., Courtet, P., & Lopez-Castroman, J. (2016). Computerized adaptive test vs. decision trees: Development of a support decision system to identify suicidal behavior. Journal of Affective Disorders, 206, 204–209. https://doi.org/10.1016/j.jad.2016.07.032
Article CAS PubMed Google Scholar
Delgado-Gomez, D., Laria, J. C., & Ruiz-Hernandez, D. (2019). Computerized adaptive test and decision trees: A unifying approach. Expert Systems with Applications, 117, 358–366. https://doi.org/10.1016/j.eswa.2018.09.052
Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in Finance (Vol. 1170). New York, NY: Springer International Publishing.
Doi, S., Ito, M., Takebayashi, Y., Muramatsu, K., & Horikoshi, M. (2018). Factorial validity and invariance of the Patient Health Questionnaire (PHQ)-9 among clinical and non-clinical populations. PLoS ONE, 13(7), e0199235. https://doi.org/10.1371/journal.pone.0199235
Article CAS PubMed PubMed Central Google Scholar
Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91–118. https://doi.org/10.1146/annurev-clinpsy-032816-045037
Dzyabura, D., & Yoganarasimhan, H. (2018). Machine learning and marketing. In N. Mizik & D. M. Hanssens (Eds.), Handbook of marketing analytics (pp. 255–279). Edward Elgar Publishing.
Eggen, T. J. H. M., & Straetmans, G. J. J. M. (2000). Computerized adaptive testing for classifying examinees into three categories. Educational and Psychological Measurement, 60(5), 713–734. https://doi.org/10.1177/0013164002197086
Fliege, H., Becker, J., Walter, O. B., Bjorner, J. B., Klapp, B. F., & Rose, M. (2005). Development of a computer-adaptive test for depression (D-CAT). Quality of Life Research, 14, 2277–2291. https://doi.org/10.1007/s11136-005-6651-9
Gibbons, R. D., Weiss, D. J., Kupfer, D. J., Frank, E., Fagiolini, A., Grochocinski, V. J., ... & Immekus, J. C. (2008). Using computerized adaptive testing to reduce the burden of mental health assessment. Psychiatric Services, 59(4), 361−368. https://doi.org/10.1176/ps.2008.59.4.361
Gibbons, R. D., Hooker, G., Finkelman, M. D., Weiss, D. J., Pilkonis, P. A., Frank, E., ... & Kupfer, D. J. (2013). The computerized adaptive diagnostic test for major depressive disorder (CAD-MDD): a screening tool for depression. The Journal of Clinical Psychiatry, 74(7), 3579. https://doi.org/10.4088/JCP.12m08338
Gilbody, S., Richards, D., Brealey, S., & Hewitt, C. (2007). Screening for depression in medical settings with the Patient Health Questionnaire (PHQ): A diagnostic meta-analysis. Journal of General Internal Medicine, 22(11), 1596–1602. https://doi.org/10.1007/s11606-007-0333-y
Article PubMed PubMed Central Google Scholar
Gonzalez, O. (2021a). Psychometric and machine learning approaches for diagnostic assessment and tests of individual classification. Psychological Methods, 26(2), 236–254. https://doi.org/10.1037/met0000317
Gonzalez, O. (2021b). Psychometric and machine learning approaches to reduce the length of scales. Multivariate Behavioral Research, 56(6), 903–919. https://doi.org/10.1080/00273171.2020.1781585
Gupta, B., Rawat, A., Jain, A., Arora, A., & Dhami, N. (2017). Analysis of various decision tree algorithms for classification in data mining. International Journal of Computer Applications, 163(8), 15–19. https://doi.org/10.5120/ijca2017913660
Hamilton, L. S. (1999). Detecting gender-based differential item functioning on a constructed-response science test. Applied Measurement in Education, 12(3), 211–235. https://doi.org/10.1207/S15324818AME1203_1
Hartung, C. M., & Lefler, E. K. (2019). Sex and gender in psychopathology: DSM–5 and beyond. Psychological Bulletin, 145(4), 390–409. https://doi.org/10.1037/bul0000183
Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Vol. 2). Springer.
Hathaway, S. R., & McKinley, J. C. (1989). MMPI-2: Minnesota Multiphasic Personality Inventory-2: Manual for administration and scoring. University of Minnesota Press.
Higa, A. (2018). Diagnosis of breast cancer using decision tree and artificial neural network algorithms. International Journal of Computer Applications Technology and Research, 1(7), 23–27. https://doi.org/10.7753/ijcatr0701.1004
Comments (0)