Development and validation of a collaborative robotic platform based on monocular vision for oral surgery: an in vitro study

Guo X, Wang D, Li J, Zhang H (2023) Global research status and trends in orthopaedic surgical robotics: a bibliometric and visualisation analysis study. J Robotic Surg 17:1743–1756. https://doi.org/10.1007/s11701-023-01579-x

Article  Google Scholar 

Xu Z, Xiao Y, Zhou L, Lin Y, Su E, Chen J, Wu D (2023) Accuracy and efficiency of robotic dental implant surgery with different human-robot interactions: An in vitro study. J Dent 137:104642. https://doi.org/10.1016/j.jdent.2023.104642

Article  PubMed  Google Scholar 

Li N, Jiang Z, Pu R, Zhu D, Yang G (2023) Implant failure and associated risk factors of transcrestal sinus floor elevation: a retrospective study. Clin Oral Implant Res 34:66–77. https://doi.org/10.1111/clr.14020

Article  CAS  Google Scholar 

Seo C, Juodzbalys G (2018) Accuracy of guided surgery via stereolithographic mucosa-supported surgical guide in implant surgery for edentulous patient: a systematic review. J Oral Maxillofac Res 9:e1. https://doi.org/10.5037/jomr.2018.9101

Article  PubMed  PubMed Central  Google Scholar 

Wu Y, Wang F, Huang W, Fan S (2019) Real-time navigation in zygomatic implant placement: workflow. Oral Maxillofac Surg Clin North Am 31:357–367. https://doi.org/10.1016/j.coms.2019.03.001

Article  PubMed  Google Scholar 

Block MS, Emery RW (2016) Static or dynamic navigation for implant placement—choosing the method of guidance. J Oral Maxillofac Surg 74:269–277. https://doi.org/10.1016/j.joms.2015.09.022

Article  PubMed  Google Scholar 

Golob Deeb J, Bencharit S, Carrico CK, Lukic M, Hawkins D, Rener-Sitar K, Deeb GR (2019) Exploring training dental implant placement using computer-guided implant navigation system. Oral Surg Oral Med Oral Pathol Oral Radiol 128:e21. https://doi.org/10.1016/j.oooo.2019.02.248

Article  Google Scholar 

Kivovics M, Takács A, Pénzes D, Németh O, Mijiritsky E (2022) Accuracy of dental implant placement using augmented reality-based navigation, static computer assisted implant surgery, and the free-hand method: an in vitro study. J Dent 119:104070. https://doi.org/10.1016/j.jdent.2022.104070

Article  CAS  PubMed  Google Scholar 

Grecchi E, Stefanelli LV, Grecchi F, Grivetto F, Franchina A, Pranno N (2022) A novel guided zygomatic implant surgery system compared to free hand: a human cadaver study on accuracy. J Dent 119:103942. https://doi.org/10.1016/j.jdent.2021.103942

Article  CAS  PubMed  Google Scholar 

Wu Y, Wang F, Fan S, Chow JK-F (2019) Robotics in dental implantology. Oral Maxillofac Surg Clin North Am 31:513–518. https://doi.org/10.1016/j.coms.2019.03.013

Article  PubMed  Google Scholar 

Tao B, Feng Y, Fan X, Zhuang M, Chen X, Wang F, Wu Y (2022) Accuracy of dental implant surgery using dynamic navigation and robotic systems: an in vitro study. J Dent 123:104170. https://doi.org/10.1016/j.jdent.2022.104170

Article  PubMed  Google Scholar 

Jia S, Wang G, Zhao Y, Wang X (2023) Accuracy of an autonomous dental implant robotic system versus static guide-assisted implant surgery: a retrospective clinical study. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2023.04.027

Article  PubMed  Google Scholar 

Li Y, Hu J, Tao B, Yu D, Shen Y, Fan S, Wu Y, Chen X (2020) Automatic robot-world calibration in an optical-navigated surgical robot system and its application for oral implant placement. Int J CARS 15:1685–1692. https://doi.org/10.1007/s11548-020-02232-w

Article  Google Scholar 

Gao Y, Qin C, Tao B, Hu J, Wu Y, Chen X (2021) An electromagnetic tracking implantation navigation system in dentistry with virtual calibration. Int J Med Robot Comput Assist Surg 17:e2215. https://doi.org/10.1002/rcs.2215

Article  Google Scholar 

Gao G, Zhao J, Na J (2018) Decoupling of kinematic parameter identification for articulated arm coordinate measuring machines. IEEE Access 6:50433–50442. https://doi.org/10.1109/ACCESS.2018.2868497

Article  Google Scholar 

Chen J, Zhuang M, Tao B, Wu Y, Ye L, Wang F (2023) Accuracy of immediate dental implant placement with task-autonomous robotic system and navigation system: an in vitro study. Clin Oral Implants Res. https://doi.org/10.1111/clr.14104

Article  PubMed  Google Scholar 

Yan B, Zhang W, Cai L, Zheng L, Bao K, Rao Y, Yang L, Ye W, Guan P, Yang W, Li J, Yang R (2022) Optics-guided robotic system for dental implant surgery. Chin J Mech Eng 35:55. https://doi.org/10.1186/s10033-022-00732-1

Article  Google Scholar 

Bi Y, Li C, Tong X, Wang G, Sun H (2023) An application of stereo matching algorithm based on transfer learning on robots in multiple scenes. Sci Rep 13:12739. https://doi.org/10.1038/s41598-023-39964-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22:1330–1334. https://doi.org/10.1109/34.888718

Article  Google Scholar 

Dong M, Xu L, Wang J, Sun P, Zhu L (2013) Variable-weighted grayscale centroiding and accuracy evaluating. Adv Mech Eng 5:428608. https://doi.org/10.1155/2013/428608

Article  Google Scholar 

Ke T, Roumeliotis SI (2017) An efficient algebraic solution to the perspective-three-point problem. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 4618–4626

Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp 2564–2571

Meza J, Romero LA, Marrugo AG (2021) MarkerPose: robust real-time planar target tracking for accurate stereo pose estimation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 1282–1290

Wang S, Xu S, Ma Z, Wang D, Li W (2023) A systematic solution for moving-target detection and tracking while only using a monocular camera. Sensors 23:4862. https://doi.org/10.3390/s23104862

Article  PubMed  PubMed Central  Google Scholar 

Ma Q, Kobayashi E, Suenaga H, Hara K, Wang J, Nakagawa K, Sakuma I, Masamune K (2020) Autonomous surgical robot with camera-based markerless navigation for oral and maxillofacial surgery. IEEE/ASME Trans Mech 25:1084–1094. https://doi.org/10.1109/TMECH.2020.2971618

Article  Google Scholar 

Yang J, Li H (2024) Accuracy assessment of robot-assisted implant surgery in dentistry: a systematic review and meta-analysis. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2023.12.003

Article  PubMed  Google Scholar 

Bi S, Wang M, Zou J, Gu Y, Zhai C, Gong M (2022) Dental implant navigation system based on trinocular stereo vision. Sensors 22:2571. https://doi.org/10.3390/s22072571

Article  PubMed  PubMed Central  Google Scholar 

Bi S, Gu Y, Zou J, Wang L, Zhai C, Gong M (2021) High precision optical tracking system based on near infrared trinocular stereo vision. Sensors 21:2528. https://doi.org/10.3390/s21072528

Article  PubMed  PubMed Central  Google Scholar 

Wei S, Li Y, Deng K, Lai H, Tonetti MS, Shi J (2022) Does machine-vision-assisted dynamic navigation improve the accuracy of digitally planned prosthetically guided immediate implant placement? a randomized controlled trial. Clin Oral Implant Res 33:804–815. https://doi.org/10.1111/clr.13961

Article  CAS  Google Scholar 

Ruppin J, Popovic A, Strauss M, Spüntrup E, Steiner A, Stoll C (2008) Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: optical tracking vs. stereolithographic splint systems. Clin Oral Implant Res 19:709–716. https://doi.org/10.1111/j.1600-0501.2007.01430.x-i2

Article  Google Scholar 

Cheng K, Kan T, Liu Y, Zhu W, Zhu F, Wang W, Jiang X, Dong X (2021) Accuracy of dental implant surgery with robotic position feedback and registration algorithm: an in-vitro study. Comput Biol Med 129:104153. https://doi.org/10.1016/j.compbiomed.2020.104153

Article  PubMed  Google Scholar 

Zhou LP, Zhang RJ, Sun YW, Zhang L, Shen CL (2021) Accuracy of pedicle screw placement and four other clinical outcomes of robotic guidance technique versus computer-assisted navigation in thoracolumbar surgery: a meta-analysis. World Neurosurg 146:e139–e150. https://doi.org/10.1016/j.wneu.2020.10.055

Article  PubMed  Google Scholar 

Comments (0)

No login
gif