Marx V. Method of the year: spatially resolved transcriptomics. Nat Methods. 2021;18:9–14.
Article CAS PubMed Google Scholar
Chen A, Liao S, Cheng M, Ma K, Wu L, Lai Y, Qiu X, Yang J, Xu J, Hao S, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 2022;185(1777–1792): e1721.
He S, Bhatt R, Brown C, Brown EA, Buhr DL, Chantranuvatana K, Danaher P, Dunaway D, Garrison RG, Geiss G, et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat Biotechnol. 2022;40(12):1794–806.
Article CAS PubMed Google Scholar
Janesick A, Shelansky R, Gottscho AD, Wagner F, Williams SR, Rouault M, Beliakoff G, Morrison CA, Oliveira MF, Sicherman JT, Kohlway A, Abousoud J, Drennon TY, Mohabbat SH, 10x Development Teams, Taylor SEB. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat Commun. 2023;14(1):8353.
Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022;19:534–46.
Article CAS PubMed Google Scholar
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 2021;14:98.
Article PubMed PubMed Central Google Scholar
Dries R, Chen J, Del Rossi N, Khan MM, Sistig A, Yuan GC. Advances in spatial transcriptomic data analysis. Genome Res. 2021;31:1706–18.
Article PubMed PubMed Central Google Scholar
Zappia L, Phipson B, Oshlack A. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput Biol. 2018;14:e1006245.
Article PubMed PubMed Central Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
Article PubMed PubMed Central Google Scholar
Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15:e8746.
Article PubMed PubMed Central Google Scholar
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296.
Article CAS PubMed PubMed Central Google Scholar
Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:75.
Salas SM, Czarnewski P, Kuemmerle LB, Helgadottir S, Mattsson Langseth C, Tiesmeyer S, Avenel C, Rehman H, Tiklova K, Andersson A, Chatzinikolaou M, Theis FJ, Luecken MD, Wählby C, Ishaque N, Nilsson M. Optimizing Xenium in situ data utility by quality assessment and best practice analysis workflows. bioRxiv. 2023;2023.02.13.528102.
Saiselet M, Rodrigues-Vitoria J, Tourneur A, Craciun L, Spinette A, Larsimont D, Andry G, Lundeberg J, Maenhaut C, Detours V. Transcriptional output, cell-type densities, and normalization in spatial transcriptomics. J Mol Cell Biol. 2020;12:906–8.
Article PubMed PubMed Central Google Scholar
Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR, Catallini JL 2nd, Tran MN, Besich Z, Tippani M, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci. 2021;24:425–36.
Article CAS PubMed PubMed Central Google Scholar
Pardo B, Spangler A, Weber LM, Page SC, Hicks SC, Jaffe AE, Martinowich K, Maynard KR, Collado-Torres L. spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data. BMC Genomics. 2022;23:434.
Article CAS PubMed PubMed Central Google Scholar
Fresh Frozen Mouse Brain Replicates - In Situ Gene Expression Dataset by Xenium Onboard Analysis 1.0.2 https://www.10xgenomics.com/resources/datasets/fresh-frozen-mouse-brain-replicates-1-standard
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwe H, Pircher A, Van den Eynde K, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24:1277–89.
Article CAS PubMed Google Scholar
Salim A, Molania R, Wang J, De Livera A, Thijssen R, Speed TP. RUV-III-NB: normalization of single cell RNA-seq data. Nucleic Acids Res. 2022;50:e96.
Article CAS PubMed PubMed Central Google Scholar
Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, et al. Orchestrating single-cell analysis with bioconductor. Nat Methods. 2020;17:137–45.
Article CAS PubMed Google Scholar
Zhao E, Stone MR, Ren X, Guenthoer J, Smythe KS, Pulliam T, Williams SR, Uytingco CR, Taylor SEB, Nghiem P, et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol. 2021;39:1375–84.
Article CAS PubMed PubMed Central Google Scholar
Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin DJ, Lee EB, Shinohara RT, Li M. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat Methods. 2021;18:1342–51.
Atta L, Clifton K, Anant M, Fan J. Gene count normalization in single-cell imaging-based spatially resolved transcriptomics. bioRxiv. 2023;2023.08.30.555624.
Birch CP, Oom SP, Beecham JA. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol Model. 2007;206:347–59.
Yates F. The analysis of multiple classifications with unequal numbers in the different classes. J Am Stat Assoc. 1934;29:51–66.
Wang Q, Ding SL, Li Y, Royall J, Feng D, Lesnar P, Graddis N, Naeemi M, Facer B, Ho A, et al. The allen mouse brain common coordinate framework: a 3d reference atlas. Cell. 2020;181(936–953):e920.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article CAS PubMed Google Scholar
Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.
Article PubMed PubMed Central Google Scholar
Lin Y, Ghazanfar S, Strbenac D, Wang A, Patrick E, Lin DM, Speed T. Yang JYH. Yang P: Evaluating stably expressed genes in single cells. Gigascience; 2019. p. 8.
Lun AT, McCarthy DJ, Marioni JC. A step by step workflow for low level analysis of single-cell RNA seq data with bioconductor. F1000Res. 2016;5:2122.
PubMed PubMed Central Google Scholar
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech: Theory Exp. 2008;2008:P10008.
Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019;9:5233.
Article CAS PubMed PubMed Central Google Scholar
Su S, Tian L, Dong X, Hickey PF, Freytag S, Ritchie ME. Cell Bench: R/Bioconductor software for comparing single-cell RNA-seq analysis methods. Bioinformatics. 2020;36:2288–90.
Article CAS PubMed Google Scholar
Bhuva DD, Tan CW, Marceaux C, Pickering M, Salim A, Chen J, Kharbanda M, Jin X, Liu N, Feher K, et al. Library size confounds biology in spatial transcriptomics data. 2024. Zenodo. https://doi.org/10.5281/zenodo.7959786.
Bhuva DD: SubcellularSpatialData: annotated spatial transcriptomics datasets from 10x Xenium, NanoString CosMx and BGI STOmics. Bioconductor. 2024 https://doi.org/10.18129/B9.bioc.SubcellularSpatialData.
Bhuva DD. Library size confounds biology in spatial transcriptomics. 2024. Zenodo. https://doi.org/10.5281/zenodo.10946961.
Blischak JD, Carbonetto P, Stephens M. Creating and sharing reproducible research code the workflowr way. F1000Res. 2019;8:1749.
Comments (0)