The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression

Corben, A. D. (2013). Pathology of invasive breast disease. Surgical Clinics of North America, 93(2), 363–392. https://doi.org/10.1016/j.suc.2013.01.003.

Article  PubMed  Google Scholar 

Arpino, G., Bardou, V. J., Clark, G. M., & Elledge, R. M. (2004). Infiltrating lobular carcinoma of the breast: Tumor characteristics and clinical outcome. Breast Cancer Research, 6(3), R149–156. https://doi.org/10.1186/bcr767.

Article  PubMed  PubMed Central  Google Scholar 

Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. https://doi.org/10.1038/35021093.

Article  CAS  PubMed  Google Scholar 

Johnson, K. S., Conant, E. F., & Soo, M. S. (2020). Molecular subtypes of breast Cancer: A review for breast radiologists. Journal of Breast Imaging, 3(1), 12–24. https://doi.org/10.1093/jbi/wbaa110.

Article  Google Scholar 

Orrantia-Borunda, E., Anchondo-Nunez, P., Acuna-Aguilar, L. E., Gomez-Valles, F. O., & Ramirez-Valdespino, C. A. (2022). Subtypes of Breast Cancer. In H. N. Mayrovitz (Ed.), Breast Cancer. Brisbane (AU).

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. C Ca: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708.

Article  Google Scholar 

Paul, C. D., Mistriotis, P., & Konstantopoulos, K. (2017). Cancer cell motility: Lessons from migration in confined spaces. Nature Reviews Cancer, 17(2), 131–140. https://doi.org/10.1038/nrc.2016.123.

Article  CAS  PubMed  Google Scholar 

Wirtz, D., Konstantopoulos, K., & Searson, P. C. (2011). The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 11(7), 512–522. https://doi.org/10.1038/nrc3080.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nia, H. T., Munn, L. L., & Jain, R. K. (2020). Physical traits of cancer. Science, 370(6516). https://doi.org/10.1126/science.aaz0868.

Bera, K., Kiepas, A., Zhang, Y., Sun, S. X., & Konstantopoulos, K. (2022). The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol, 10, 954099. https://doi.org/10.3389/fcell.2022.954099.

Article  PubMed  PubMed Central  Google Scholar 

Heldin, C. H., Rubin, K., Pietras, K., & Ostman, A. (2004). High interstitial fluid pressure - an obstacle in cancer therapy. Nature Reviews Cancer, 4(10), 806–813. https://doi.org/10.1038/nrc1456.

Article  CAS  PubMed  Google Scholar 

Nathanson, S. D., & Nelson, L. (1994). Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Annals of Surgical Oncology, 1(4), 333–338. https://doi.org/10.1007/BF03187139.

Article  CAS  PubMed  Google Scholar 

Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. American Journal of Pathology, 156(4), 1363–1380. https://doi.org/10.1016/S0002-9440(10)65006-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain, R. K. (2001). Delivery of molecular medicine to solid tumors: Lessons from in vivo imaging of gene expression and function. Journal of Controlled Release : Official Journal of the Controlled Release Society, 74(1–3), 7–25. https://doi.org/10.1016/s0168-3659(01)00306-6.

Article  CAS  PubMed  Google Scholar 

Greenberg, J. I., & Cheresh, D. A. (2009). VEGF as an inhibitor of tumor vessel maturation: Implications for cancer therapy. Expert Opinion on Biological Therapy, 9(11), 1347–1356. https://doi.org/10.1517/14712590903208883.

Article  CAS  PubMed  Google Scholar 

De Bock, K., Cauwenberghs, S., & Carmeliet, P. (2011). Vessel abnormalization: Another hallmark of cancer? Molecular mechanisms and therapeutic implications. Current Opinion in Genetics & Development, 21(1), 73–79. https://doi.org/10.1016/j.gde.2010.10.008.

Article  CAS  Google Scholar 

Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K., & Jain, R. K. (2000). Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Research, 60(16), 4324–4327.

CAS  PubMed  Google Scholar 

Wu, M., Frieboes, H. B., McDougall, S. R., Chaplain, M. A., Cristini, V., & Lowengrub, J. (2013). The effect of interstitial pressure on tumor growth: Coupling with the blood and lymphatic vascular systems. Journal of Theoretical Biology, 320, 131–151. https://doi.org/10.1016/j.jtbi.2012.11.031.

Article  PubMed  Google Scholar 

Less, J. R., Posner, M. C., Boucher, Y., Borochovitz, D., Wolmark, N., & Jain, R. K. (1992). Interstitial hypertension in human breast and colorectal tumors. Cancer Research, 52(22), 6371–6374.

CAS  PubMed  Google Scholar 

Dadiani, M., Kalchenko, V., Yosepovich, A., Margalit, R., Hassid, Y., Degani, H., et al. (2006). Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Research, 66(16), 8037–8041. https://doi.org/10.1158/0008-5472.CAN-06-0728.

Article  CAS  PubMed  Google Scholar 

Ferretti, S., Allegrini, P. R., Becquet, M. M., & McSheehy, P. M. (2009). Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia (New York, N.Y.), 11(9), 874–881. https://doi.org/10.1593/neo.09554.

Article  CAS  PubMed  Google Scholar 

Kim, S., Decarlo, L., Cho, G. Y., Jensen, J. H., Sodickson, D. K., Moy, L., et al. (2012). Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model. Nmr in Biomedicine, 25(5), 787–794. https://doi.org/10.1002/nbm.1793.

Article  PubMed  Google Scholar 

Islam, M. T., Tang, S., Tasciotti, E., & Righetti, R. (2021). Non-invasive Assessment of the spatial and temporal distributions of interstitial fluid pressure, Fluid Velocity and Fluid Flow in Cancers in vivo. Ieee Access : Practical Innovations, Open Solutions, 9, 89222–89233. https://doi.org/10.1109/ACCESS.2021.3089454.

Article  Google Scholar 

Hassid, Y., Furman-Haran, E., Margalit, R., Eilam, R., & Degani, H. (2006). Noninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors. Cancer Research, 66(8), 4159–4166. https://doi.org/10.1158/0008-5472.CAN-05-3289.

Article  CAS  PubMed  Google Scholar 

Boucher, Y., Baxter, L. T., & Jain, R. K. (1990). Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Research, 50(15), 4478–4484.

CAS  PubMed  Google Scholar 

Jain, R. K., & Baxter, L. T. (1988). Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Research, 48(24 Pt 1), 7022–7032.

CAS  PubMed  Google Scholar 

Chauhan, V. P., Stylianopoulos, T., Boucher, Y., & Jain, R. K. (2011). Delivery of molecular and nanoscale medicine to tumors: Transport barriers and strategies. Annu Rev Chem Biomol Eng, 2, 281–298. https://doi.org/10.1146/annurev-chembioeng-061010-114300.

Article  CAS  PubMed  Google Scholar 

Stylianopoulos, T., & Jain, R. K. (2013). Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci U S A, 110(46), 18632–18637. https://doi.org/10.1073/pnas.1318415110.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., & Jain, R. K. (2004). Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Research, 64(11), 3731–3736. https://doi.org/10.1158/0008-5472.CAN-04-0074.

Article  CAS  PubMed  Google Scholar 

Chauhan, V. P., Stylianopoulos, T., Martin, J. D., Popovic, Z., Chen, O., Kamoun, W. S., et al. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotechnology, 7(6), 383–388. https://doi.org/10.1038/nnano.2012.45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng, L., Gan, S., Zhou, Y., Cheng, Y., Ding, Y., Tong, X., et al. (2018). Oxygen-rich chemotherapy via modified Abraxane to inhibit the growth and metastasis of triple-negative breast cancer. Biomater Sci, 7(1), 168–177. https://doi.org/10.1039/c8bm00753e.

Article  CAS  PubMed  Google Scholar 

Chen, Q., Liang, C., Wang, C., & Liu, Z. (2015). An imagable and photothermal abraxane-like nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Advanced Materials, 27(5), 903–910. https://doi.org/10.1002/adma.201404308.

Article  CAS  PubMed  Google Scholar 

Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G., & Jain, R. K. (2018). Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nature Reviews. Clinical Oncology, 15(5), 325–340. https://doi.org/10.1038/nrclinonc.2018.29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kazazi-Hyseni, F., Beijnen, J. H., & Schellens, J. H. (2010). Bevacizumab Oncologist, 15(8), 819–825, doi:https://doi.org/10.1634/theoncologist.2009-0317.

Article  CAS  PubMed  Google Scholar 

Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., et al. (2007). Paclitaxel plus Bevacizumab versus paclitaxel alone for metastatic breast cancer. New England Journal of Medicine, 357(26), 2666–2676. https://doi.org/10.1056/NEJMoa072113.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif