Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy

Mostoslavsky, R., Alt, F. W., & Bassing, C. H. (2003). Chromatin dynamics and locus accessibility in the immune system. Nature Immunology, 4(7), 603–606. https://doi.org/10.1038/ni0703-603

Article  CAS  PubMed  Google Scholar 

Sawalha, A. H. (2008). Epigenetics and T-cell immunity. Autoimmunity, 41(4), 245–252. https://doi.org/10.1080/08916930802024145

Article  CAS  PubMed  Google Scholar 

Hongo, D., Tang, X., Dutt, S., Nador, R. G., & Strober, S. (2012). Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood, 119(6), 1581–1589. https://doi.org/10.1182/blood-2011-08-371948

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi, T., & Sakaguchi, S. (2003). Naturally arising CD25+CD4+ regulatory T cells in maintaining immunologic self-tolerance and preventing autoimmune disease. Current Molecular Medicine, 3(8), 693–706. https://doi.org/10.2174/1566524033479429

Article  CAS  PubMed  Google Scholar 

Sakaguchi, S., Fukuma, K., Kuribayashi, K., & Masuda, T. (1985). Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. The Journal of Experimental Medicine, 161(1), 72–87. https://doi.org/10.1084/jem.161.1.72

Article  CAS  PubMed  Google Scholar 

Sugihara, S., Izumi, Y., Yoshioka, T., Yagi, H., Tsujimura, T., Tarutani, O., Kohno, Y., Murakami, S., Hamaoka, T., & Fujiwara, H. (1988). Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. I. Requirement of Lyt-1 dull L3T4 bright normal T cells for the induction of thyroiditis. The Journal of Immunology, 141(1), 105–113. https://www.ncbi.nlm.nih.gov/pubmed/2967864

Huehn, J., Polansky, J. K., & Hamann, A. (2009). Epigenetic control of FOXP3 expression: The key to a stable regulatory T-cell lineage? Nature Reviews Immunology, 9(2), 83–89. https://doi.org/10.1038/nri2474

Article  CAS  PubMed  Google Scholar 

Koch, U., & Radtke, F. (2011). Mechanisms of T cell development and transformation. Annual Review of Cell and Developmental Biology, 27, 539–562. https://doi.org/10.1146/annurev-cellbio-092910-154008

Article  CAS  PubMed  Google Scholar 

Rothenberg, E. V., Moore, J. E., & Yui, M. A. (2008). Launching the T-cell-lineage developmental programme. Nature Reviews Immunology, 8(1), 9–21. https://doi.org/10.1038/nri2232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farlik, M., Halbritter, F., Muller, F., Choudry, F. A., Ebert, P., Klughammer, J., Farrow, S., Santoro, A., Ciaurro, V., Mathur, A., Uppal, R., Stunnenberg, H. G., Ouwehand, W. H., Laurenti, E., Lengauer, T., Frontini, M., & Bock, C. (2016). DNA methylation dynamics of human hematopoietic stem cell differentiation. Cell Stem Cell, 19(6), 808–822. https://doi.org/10.1016/j.stem.2016.10.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J., Sif, S., Jones, B., Jackson, A., Koipally, J., Heller, E., Winandy, S., Viel, A., Sawyer, A., Ikeda, T., Kingston, R., & Georgopoulos, K. (1999). Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity, 10(3), 345–355. https://doi.org/10.1016/s1074-7613(00)80034-5

Article  CAS  PubMed  Google Scholar 

O’Neill, D. W., Schoetz, S. S., Lopez, R. A., Castle, M., Rabinowitz, L., Shor, E., Krawchuk, D., Goll, M. G., Renz, M., Seelig, H. P., Han, S., Seong, R. H., Park, S. D., Agalioti, T., Munshi, N., Thanos, D., Erdjument-Bromage, H., Tempst, P., & Bank, A. (2000). An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Molecular and Cellular Biology, 20(20), 7572–7582. https://doi.org/10.1128/MCB.20.20.7572-7582.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sridharan, R., & Smale, S. T. (2007). Predominant interaction of both Ikaros and Helios with the NuRD complex in immature thymocytes. Journal of Biological Chemistry, 282(41), 30227–30238. https://doi.org/10.1074/jbc.M702541200

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13(15), 1924–1935. https://doi.org/10.1101/gad.13.15.1924

Article  CAS  Google Scholar 

Yoshida, T., Hazan, I., Zhang, J., Ng, S. Y., Naito, T., Snippert, H. J., Heller, E. J., Qi, X., Lawton, L. N., Williams, C. J., & Georgopoulos, K. (2008). The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. Genes & Development, 22(9), 1174–1189. https://doi.org/10.1101/gad.1642808

Article  CAS  Google Scholar 

Bellavia, D., Mecarozzi, M., Campese, A. F., Grazioli, P., Talora, C., Frati, L., Gulino, A., & Screpanti, I. (2007). Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO Journal, 26(6), 1670–1680. https://doi.org/10.1038/sj.emboj.7601626

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collins, B., Clambey, E. T., Scott-Browne, J., White, J., Marrack, P., Hagman, J., & Kappler, J. W. (2013). Ikaros promotes rearrangement of TCR alpha genes in an Ikaros null thymoma cell line. European Journal of Immunology, 43(2), 521–532. https://doi.org/10.1002/eji.201242757

Article  CAS  PubMed  Google Scholar 

Naito, T., Gomez-Del Arco, P., Williams, C. J., & Georgopoulos, K. (2007). Antagonistic interactions between Ikaros and the chromatin remodeler Mi-2beta determine silencer activity and Cd4 gene expression. Immunity, 27(5), 723–734. https://doi.org/10.1016/j.immuni.2007.09.008

Article  CAS  PubMed  Google Scholar 

Trinh, L. A., Ferrini, R., Cobb, B. S., Weinmann, A. S., Hahm, K., Ernst, P., Garraway, I. P., Merkenschlager, M., & Smale, S. T. (2001). Down-regulation of TDT transcription in CD4(+)CD8(+) thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes & Development, 15(14), 1817–1832. https://doi.org/10.1101/gad.905601

Article  CAS  Google Scholar 

Kathrein, K. L., Lorenz, R., Innes, A. M., Griffiths, E., & Winandy, S. (2005). Ikaros induces quiescence and T-cell differentiation in a leukemia cell line. Molecular and Cellular Biology, 25(5), 1645–1654. https://doi.org/10.1128/MCB.25.5.1645-1654.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song, C., Pan, X., Ge, Z., Gowda, C., Ding, Y., Li, H., Li, Z., Yochum, G., Muschen, M., Li, Q., Payne, K. J., & Dovat, S. (2016). Epigenetic regulation of gene expression by Ikaros, HDAC1 and Casein Kinase II in leukemia. Leukemia, 30(6), 1436–1440. https://doi.org/10.1038/leu.2015.331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oravecz, A., Apostolov, A., Polak, K., Jost, B., Le Gras, S., Chan, S., & Kastner, P. (2015). Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2. Nature Communications, 6, 8823. https://doi.org/10.1038/ncomms9823

Article  CAS  PubMed  Google Scholar 

Geimer Le Lay, A. S., Oravecz, A., Mastio, J., Jung, C., Marchal, P., Ebel, C., Dembele, D., Jost, B., Le Gras, S., Thibault, C., Borggrefe, T., Kastner, P., & Chan, S. (2014). The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Science Signaling, 7(317), ra28. https://doi.org/10.1126/scisignal.2004545

Article  CAS  PubMed  Google Scholar 

Avitahl, N., Winandy, S., Friedrich, C., Jones, B., Ge, Y., & Georgopoulos, K. (1999). Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity, 10(3), 333–343. https://doi.org/10.1016/s1074-7613(00)80033-3

Article  CAS  PubMed  Google Scholar 

Lee, P. P., Fitzpatrick, D. R., Beard, C., Jessup, H. K., Lehar, S., Makar, K. W., Perez-Melgosa, M., Sweetser, M. T., Schlissel, M. S., Nguyen, S., Cherry, S. R., Tsai, J. H., Tucker, S. M., Weaver, W. M., Kelso, A., Jaenisch, R., & Wilson, C. B. (2001). A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity, 15(5), 763–774. https://doi.org/10.1016/s1074-7613(01)00227-8

Article  CAS  PubMed  Google Scholar 

Ji, H., Ehrlich, L. I., Seita, J., Murakami, P., Doi, A., Lindau, P., Lee, H., Aryee, M. J., Irizarry, R. A., Kim, K., Rossi, D. J., Inlay, M. A., Serwold, T., Karsunky, H., Ho, L., Daley, G. Q., Weissman, I. L., & Feinberg, A. P. (2010). Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature, 467(7313), 338–342. https://doi.org/10.1038/nature09367

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L., Leid, M., & Rothenberg, E. V. (2010). An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science, 329(5987), 89–93. https://doi.org/10.1126/science.1188989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L., Zhang, J. A., Dose, M., Kueh, H. Y., Mosadeghi, R., Gounari, F., & Rothenberg, E. V. (2013). A far downstream enhancer for murine Bcl11b controls its T-cell specific expression. Blood, 122(6), 902–911. https://doi.org/10.1182/blood-2012-08-447839

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tydell, C. C., David-Fung, E. S., Moore, J. E., Rowen, L., Taghon, T., & Rothenberg, E. V. (2007). Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. The Journal of Immunology, 179(1), 421–438. https://doi.org/10.4049/jimmunol.179.1.421

Article  CAS  PubMed  Google Scholar 

Li, P., Burke, S., Wang, J., Chen, X., Ortiz, M., Lee, S. C., Lu, D., Campos, L., Goulding, D., Ng, B. L., Dougan, G., Huntly, B., Gottgens, B., Jenkins, N. A., Copeland, N. G., Colucci, F., & Liu, P. (2010). Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science, 329(5987), 85–89. https://doi.org/10.1126/science.1188063

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif