The emerging roles of histone demethylases in cancers

Huang, J., Sengupta, R., Espejo, A. B., Lee, M. G., Dorsey, J. A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M. T., Jenuwein, T., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature, 449(7158), 105–108.

Article  CAS  PubMed  Google Scholar 

Wang, J., Hevi, S., Kurash, J. K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. (2009). The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genetics, 41(1), 125–129.

Article  CAS  PubMed  Google Scholar 

Kontaki, H., & Talianidis, I. (2010). Lysine methylation regulates E2F1-induced cell death. Molecular Cell, 39(1), 152–160.

Article  CAS  PubMed  Google Scholar 

Lu, T., Jackson, M. W., Wang, B., Yang, M., Chance, M. R., Miyagi, M., Gudkov, A. V., & Stark, G. R. (2010). Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 46–51.

Article  CAS  PubMed  Google Scholar 

Chopra, A., Willmore, W. G., & Biggar, K. K. (2022). Insights into a cancer-target demethylase: substrate prediction through systematic specificity analysis for KDM3A. Biomolecules, 12(5), 641.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C. A., Igarashi, K., Kanno, J., et al. (2011). PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nature Cell Biology, 13(6), 668–675.

Article  PubMed  Google Scholar 

Feng, T., Yamamoto, A., Wilkins, S. E., Sokolova, E., Yates, L. A., Munzel, M., Singh, P., Hopkinson, R. J., Fischer, R., Cockman, M. E., et al. (2014). Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Molecular Cell, 53(4), 645–654.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, J., Xiang, X., Chen, L., Wang, H., Wu, L., Sun, Y., Ma, L., Gu, X., Liu, H., Wang, L., et al. (2017). JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Reports, 18(12), 2131–2143.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, H., Wang, C., Lee, S., Ning, F., Wang, Y., Zhang, Q., Chen, Z., Zang, J., Nix, J., Dai, S., et al. (2018). Specific recognition of arginine methylated histone tails by JMJD5 and JMJD7. Science and Reports, 8(1), 3275.

Article  Google Scholar 

Webby, C. J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B., Nielsen, M. L., Schmitz, C., Butler, D. S., Yates, J. R., 3rd., et al. (2009). Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science, 325(5936), 90–93.

Article  CAS  PubMed  Google Scholar 

Mantri, M., Krojer, T., Bagg, E. A., Webby, C. A., Butler, D. S., Kochan, G., Kavanagh, K. L., Oppermann, U., McDonough, M. A., & Schofield, C. J. (2010). Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Journal of Molecular Biology, 401(2), 211–222.

Article  CAS  PubMed  Google Scholar 

Sterling, J., Menezes, S. V., Abbassi, R. H., & Munoz, L. (2020). Histone lysine demethylases and their functions in cancer. International Journal of Cancer, 148(10), 2375–2388.

Article  PubMed  Google Scholar 

Hojfeldt, J. W., Agger, K., & Helin, K. (2013). Histone lysine demethylases as targets for anticancer therapy. Nature Reviews. Drug Discovery, 12(12), 917–930.

Article  CAS  PubMed  Google Scholar 

Sarah, L., & Fujimori, D. (2023). Recent developments in catalysis and inhibition of the Jumonji histone demethylases. Current opinion in structural biology, 83, 102707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dorna, D., Grabowska, A., & Paluszczak, J. (2023). Natural products modulating epigenetic mechanisms by affecting histone methylation/demethylation: Targeting cancer cells. British Journal of Pharmacology. https://doi.org/10.1111/bph.16237

Article  PubMed  Google Scholar 

Young, D., Guha, C., & Sidoli, S. (2023). The role of histone H3 lysine demethylases in glioblastoma. Cancer and Metastasis Reviews, 42(2), 445–454.

Article  CAS  PubMed  Google Scholar 

Wu, C. Y., Hsieh, C. Y., Huang, K. E., Chang, C., & Kang, H. Y. (2012). Cryptotanshinone down-regulates androgen receptor signaling by modulating lysine-specific demethylase 1 function. International Journal of Cancer, 131(6), 1423–1434.

Article  CAS  PubMed  Google Scholar 

Gao, S., Chen, S., Han, D., Wang, Z., Li, M., Han, W., Besschetnova, A., Liu, M., Zhou, F., Barrett, D., et al. (2020). Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nature Genetics, 52(10), 1011–1017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Regufe da Mota, S., Bailey, S., Strivens, R. A., Hayden, A. L., Douglas, L. R., Duriez, P. J., Borrello, M. T., Benelkebir, H., Ganesan, A., Packham, G., et al. (2018). LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models. Cancer Cell International, 18, 71.

Article  PubMed  PubMed Central  Google Scholar 

Sehrawat, A., Gao, L., Wang, Y., Bankhead, A., 3rd., McWeeney, S. K., King, C. J., Schwartzman, J., Urrutia, J., Bisson, W. H., Coleman, D. J., et al. (2018). LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proceedings of the National Academy of Sciences of the United States of America, 115(18), E4179–E4188.

CAS  PubMed  PubMed Central  Google Scholar 

Wang, Z., Gao, S., Han, D., Han, W., Li, M., & Cai, C. (2019). LSD1 activates PI3K/AKT signaling through regulating p85 expression in prostate cancer cells. Frontiers in Oncology, 9, 721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta, S., Weston, A., Bearrs, J., Thode, T., Neiss, A., Soldi, R., & Sharma, S. (2016). Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells. Prostate Cancer and Prostatic Diseases, 19(4), 349–357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coleman, D. J., Sampson, D. A., Sehrawat, A., Kumaraswamy, A., Sun, D., Wang, Y., Schwartzman, J., Urrutia, J., Lee, A. R., Coleman, I. M., et al. (2020). Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 22(6), 253–262.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, C., He, H. H., Chen, S., Coleman, I., Wang, H., Fang, Z., Nelson, P. S., Liu, X. S., Brown, M., & Balk, S. P. (2011). Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell, 20(4), 457–471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortez, V., Mann, M., Tekmal, S., Suzuki, T., Miyata, N., Rodriguez-Aguayo, C., Lopez-Berestein, G., Sood, A. K., & Vadlamudi, R. K. (2012). Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer. Breast Cancer Research, 14(4), R108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennani-Baiti, I. M. (2012). Integration of ERalpha-PELP1-HER2 signaling by LSD1 (KDM1A/AOF2) offers combinatorial therapeutic opportunities to circumventing hormone resistance in breast cancer. Breast Cancer Research, 14(5), 112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim, S., Janzer, A., Becker, A., Zimmer, A., Schule, R., Buettner, R., & Kirfel, J. (2010). Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 31(3), 512–520.

Article  CAS  PubMed  Google Scholar 

Pollock, J. A., Larrea, M. D., Jasper, J. S., McDonnell, D. P., & McCafferty, D. G. (2012). Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chemical Biology, 7(7), 1221–1231.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J., Park, U. H., Moon, M., Um, S. J., & Kim, E. J. (2013). Negative regulation of ERalpha by a novel protein CAC1 through association with histone demethylase LSD1. FEBS Letters, 587(1), 17–22.

Article  CAS  PubMed  Google Scholar 

Grimaldi, P., Pucci, M., Di Siena, S., Di Giacomo, D., Pirazzi, V., Geremia, R., & Maccarrone, M. (2012). The faah gene is the first direct target of estrogen in the testis: Role of histone demethylase LSD1. Cellular and Molecular Life Sciences, 69(24), 4177–4190.

Article  CAS  PubMed  Google Scholar 

Cao, C., Vasilatos, S. N., Bhargava, R., Fine, J. L., Oesterreich, S., Davidson, N. E., & Huang, Y. (2017). Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene, 36(1), 133–145.

Article  CAS  PubMed  Google Scholar 

Vasilatos, S. N., Katz, T. A., Oesterreich, S., Wan, Y., Davidson, N. E., & Huang, Y. (2013). Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis, 34(6), 1196–1207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, M., Venkata, P. P., Viswanadhapalli, S., Palacios, B., Alejo, S., Chen, Y., He, Y., Pratap, U. P., Liu, J., Zou, Y., et al. (2021). KDM1A inhibition is effective in reducing stemness and treating triple negative breast cancer. Breast Cancer Research and Treatment, 185(2), 343–357.

Article

Comments (0)

No login
gif