Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575, 299–309. https://doi.org/10.1038/s41586-019-1730-1
Article PubMed PubMed Central CAS Google Scholar
Yaray, K., Norbakhsh, A., Rashidzadeh, H., Mohammadi, A., Mozafari, F., Ghaffarlou, M., Mousazadeh, N., Ghaderzadeh, R., Ghorbani, Y., Nasehi, L., et al. (2023). Chemoradiation therapy of 4T1 cancer cells with methotrexate conjugated platinum nanoparticles under X-Ray irradiation. Inorganic Chemistry Communications, 150, 110457. https://doi.org/10.1016/j.inoche.2023.110457
Assaraf, Y. G., Brozovic, A., Gonçalves, A. C., Jurkovicova, D., Linē, A., Machuqueiro, M., Saponara, S., Sarmento-Ribeiro, A. B., Xavier, C. P. R., & Vasconcelos, M. H. (2019). The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates, 46, 100645. https://doi.org/10.1016/j.drup.2019.100645
Ashrafizadeh, M., Mirzaei, S., Hashemi, F., Zarrabi, A., Zabolian, A., Saleki, H., Sharifzadeh, S. O., Soleymani, L., Daneshi, S., & Hushmandi, K. (2021). New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomedicine & Pharmacotherapy, 141, 111824.
Ashrafizadeh, M., Zarrabi, A., Hushmandi, K., Kalantari, M., Mohammadinejad, R., Javaheri, T., & Sethi, G. (2020). Association of the epithelial–mesenchymal transition (EMT) with cisplatin resistance. International journal of Molecular Sciences, 21, 4002.
Article PubMed PubMed Central CAS Google Scholar
Yang, J., Antin, P., Berx, G., Blanpain, C., Brabletz, T., Bronner, M., Campbell, K., Cano, A., Casanova, J., Christofori, G., et al. (2020). Guidelines and definitions for research on epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 21, 341–352. https://doi.org/10.1038/s41580-020-0237-9
Article PubMed PubMed Central CAS Google Scholar
Mirzaei, S., Abadi, A. J., Gholami, M. H., Hashemi, F., Zabolian, A., Hushmandi, K., Zarrabi, A., Entezari, M., Aref, A. R., & Khan, H. (2021). The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. European Journal of Pharmacology, 908, 174344.
Article PubMed CAS Google Scholar
Olmeda, D., Moreno-Bueno, G., Flores, J. M., Fabra, A., Portillo, F., & Cano, A. (2007). SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Research, 67, 11721–11731. https://doi.org/10.1158/0008-5472.Can-07-2318
Article PubMed CAS Google Scholar
Nosrati, H., Salehiabar, M., Charmi, J., Yaray, K., Ghaffarlou, M., Balcioglu, E., & Ertas, Y. N. (2023). Enhanced in vivo radiotherapy of breast cancer using gadolinium oxide and gold hybrid nanoparticles. ACS Applied Bio Materials, 6, 784–792. https://doi.org/10.1021/acsabm.2c00965
Article PubMed PubMed Central CAS Google Scholar
Ashrafizadeh, M., Hushmandi, K., Hashemi, M., Akbari, M. E., Kubatka, P., Raei, M., Koklesova, L., Shahinozzaman, M., Mohammadinejad, R., & Najafi, M. (2020). Role of microRNA/epithelial-to-mesenchymal transition axis in the metastasis of bladder cancer. Biomolecules, 10, 1159.
Article PubMed PubMed Central CAS Google Scholar
Mirzaei, S., Gholami, M. H., Aghdaei, H. A., Hashemi, M., Parivar, K., Karamian, A., Zarrabi, A., Ashrafizadeh, M., & Lu, J. (2023). Exosome-mediated miR-200a delivery into TGF-β-treated AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression. Environmental Research, 231, 116115.
Article PubMed CAS Google Scholar
Boumahdi, S., & de Sauvage, F. J. (2020). The great escape: Tumour cell plasticity in resistance to targeted therapy. Nature Reviews Drug Discovery, 19, 39–56. https://doi.org/10.1038/s41573-019-0044-1
Article PubMed CAS Google Scholar
Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24, 65–78. https://doi.org/10.1016/j.stem.2018.11.011
Article PubMed CAS Google Scholar
Erin, N., Grahovac, J., Brozovic, A., & Efferth, T. (2020). Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resistance Updates, 53, 100715. https://doi.org/10.1016/j.drup.2020.100715
Barriere, G., Fici, P., Gallerani, G., Fabbri, F., & Rigaud, M. (2015). Epithelial mesenchymal transition: A double-edged sword. Clinical and Translational Medicine, 4, 14. https://doi.org/10.1186/s40169-015-0055-4
Article PubMed PubMed Central Google Scholar
Nieto, M. A., Huang, R. Y., Jackson, R. A., & Thiery, J. P. E. M. T. (2016). Cell, 2016(166), 21–45. https://doi.org/10.1016/j.cell.2016.06.028
Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 15, 178–196. https://doi.org/10.1038/nrm3758
Article PubMed PubMed Central CAS Google Scholar
Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428. https://doi.org/10.1038/nrc2131
Article PubMed CAS Google Scholar
Kang, Y., & Massagué, J. (2004). Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell, 118, 277–279. https://doi.org/10.1016/j.cell.2004.07.011
Article PubMed CAS Google Scholar
Wick, W., Platten, M., & Weller, M. (2001). Glioma cell invasion: Regulation of metalloproteinase activity by TGF-beta. Journal of Neuro-oncology, 53, 177–185. https://doi.org/10.1023/a:1012209518843
Article PubMed CAS Google Scholar
Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119, 1420–1428. https://doi.org/10.1172/jci39104
Article PubMed PubMed Central CAS Google Scholar
Ocaña, O. H., Córcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., Barrallo-Gimeno, A., Cano, A., & Nieto, M. A. (2012). Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22, 709–724. https://doi.org/10.1016/j.ccr.2012.10.012
Article PubMed CAS Google Scholar
Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S., & Yang, J. (2012). Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell, 22, 725–736. https://doi.org/10.1016/j.ccr.2012.09.022
Article PubMed PubMed Central CAS Google Scholar
Shibue, T., Brooks, M. W., & Weinberg, R. A. (2013). An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. Cancer Cell, 24, 481–498. https://doi.org/10.1016/j.ccr.2013.08.012
Article PubMed CAS Google Scholar
Nikolaou, M., Pavlopoulou, A., Georgakilas, A. G., & Kyrodimos, E. (2018). The challenge of drug resistance in cancer treatment: A current overview. Clinical & Experimental Metastasis, 35, 309–318. https://doi.org/10.1007/s10585-018-9903-0
Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: An overview. Cancers (Basel), 6, 1769–1792. https://doi.org/10.3390/cancers6031769
Zheng, X., Carstens, J. L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., Wu, C. C., LeBleu, V. S., & Kalluri, R. (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527, 525–530. https://doi.org/10.1038/nature16064
Article PubMed PubMed Central CAS Google Scholar
Fischer, K. R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S. T., Choi, H., El Rayes, T., Ryu, S., Troeger, J., et al. (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 527, 472–476. https://doi.org/10.1038/nature15748
Article PubMed PubMed Central CAS Google Scholar
Huang, J., Li, H., & Ren, G. (2015). Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). International Journal of Oncology, 47, 840–848. https://doi.org/10.3892/ijo.2015.3084
Article PubMed CAS Google Scholar
Saxena, M., Stephens, M. A., Pathak, H., & Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death & Disease, 2, e179. https://doi.org/10.1038/cddis.2011.61
Sommers, C. L., Heckford, S. E., Skerker, J. M., Worland, P., Torri, J. A., Thompson, E. W., Byers, S. W., & Gelmann, E. P. (1992). Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Research, 52, 5190–5197.
Della Corte, C. M., Bellevicine, C., Vicidomini, G., Vitagliano, D., Malapelle, U., Accardo, M., Fabozzi, A., Fiorelli, A., Fasano, M., Papaccio, F., et al. (2015). SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clinical Cancer Research, 21, 4686–4697. https://doi.org/10.1158/1078-0432.Ccr-14-3319
Comments (0)