Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians., 71(3), 209–49.

PubMed  Google Scholar 

Fouad, Y. A., & Aanei, C. (2017). Revisiting the hallmarks of cancer. American Journal of Cancer Research., 7(5), 1016.

CAS  PubMed  PubMed Central  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

Article  CAS  PubMed  Google Scholar 

Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer Discovery., 9(7), 837–851.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, S., & Clairambault, J. (2020). Cell plasticity in cancer cell populations. F1000Res, 9, 635.

Article  CAS  Google Scholar 

Barker, N., Ridgway, R. A., Van Es, J. H., Van De Wetering, M., Begthel, H., Van Den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.

Article  ADS  CAS  PubMed  Google Scholar 

Perekatt, A. O., Shah, P. P., Cheung, S., Jariwala, N., Wu, A., Gandhi, V., et al. (2018). SMAD4 suppresses WNT-driven dedifferentiation and oncogenesis in the differentiated gut epithelium. Cancer Research., 78(17), 4878–4890.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shih, I.-M., Wang, T.-L., Traverso, G., Romans, K., Hamilton, S. R., Ben-Sasson, S., et al. (2001). Top-down morphogenesis of colorectal tumors. Proceedings of the National Academy of Sciences., 98(5), 2640–2645.

Article  ADS  CAS  Google Scholar 

Baylin, S. B., & Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring Harbor Perspectives in Biology., 8(9), a019505.

Article  PubMed  PubMed Central  Google Scholar 

Flavahan, W. A., Gaskell, E., & Bernstein, B. E. (2017). Epigenetic plasticity and the hallmarks of cancer. Science, 357(6348), eaal2380.

Article  PubMed  PubMed Central  Google Scholar 

Jones, P. A., Issa, J. P. J., & Baylin, S. (2016). Targeting the cancer epigenome for therapy. Nature Reviews Genetics., 17(10), 630–41.

Article  CAS  PubMed  Google Scholar 

Thienpont, B., Van Dyck, L., & Lambrechts, D. (2016). Tumors smother their epigenome. Molecular & Cellular Oncology., 3(6), e1240549.

Article  Google Scholar 

Tata, P. R., & Rajagopal, J. (2016). Cellular plasticity: 1712 to the present day. Current Opinion in Cell Biology., 43, 46–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-González, A., Bévant, K., & Blanpain, C. (2023). Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nature Cancer., 4(8), 1063–1082.

Article  PubMed  PubMed Central  Google Scholar 

Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. Nature Reviews Cancer., 18(2), 128–134.

Article  CAS  PubMed  Google Scholar 

Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews Clinical Oncology., 14(10), 611–629.

Article  PubMed  PubMed Central  Google Scholar 

Hay, E. D. (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Developmental Dynamics: An official publication of the American Association of Anatomists., 233(3), 706–720.

Article  CAS  PubMed  Google Scholar 

Boyer, B., & Thiery, J. P. (1993). Epithelium-mesenchyme interconversion as example of epithelial plasticity. APMIS, 101(1–6), 257–68.

Article  CAS  PubMed  Google Scholar 

Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

Article  CAS  PubMed  Google Scholar 

Stemmler, M. P., Eccles, R. L., Brabletz, S., & Brabletz, T. (2019). Non-redundant functions of EMT transcription factors. Nature Cell Biology., 21(1), 102–112.

Article  CAS  PubMed  Google Scholar 

Carver, E. A., Jiang, R., Lan, Y., Oram, K. F., & Gridley, T. (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Molecular and Cellular Biology., 21(23), 8184–8188.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemavathy, K., Guru, S. C., Harris, J., Chen, J. D., & Ip, Y. T. (2000). Human Slug is a repressor that localizes to sites of active transcription. Molecular and Cellular Biology., 20(14), 5087–5095.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inukai, T., Inoue, A., Kurosawa, H., Goi, K., Shinjyo, T., Ozawa, K., et al. (1999). SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Molecular Cell., 4(3), 343–352.

Article  CAS  PubMed  Google Scholar 

Vega, S., Morales, A. V., Ocaña, O. H., Valdés, F., Fabregat, I., & Nieto, M. A. (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes & Development., 18(10), 1131–1143.

Article  CAS  Google Scholar 

Krebs, A. M., Mitschke, J., Lasierra Losada, M., Schmalhofer, O., Boerries, M., Busch, H., et al. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology., 19(5), 518–529.

Article  CAS  PubMed  Google Scholar 

Rusinova, I., Forster, S., Yu, S., Kannan, A., Masse, M., Cumming, H., et al. (2012). Interferome v2. 0: An updated database of annotated interferon-regulated genes. Nucleic Acids Research, 41(D1), D1040–D6.

Article  PubMed  PubMed Central  Google Scholar 

Migault, M., Sapkota, S., & Bracken, C. P. (2022). Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: Why so many regulators? Cellular and Molecular Life Sciences, 79(3), 182.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brabletz, S., Schuhwerk, H., Brabletz, T., & Stemmler, M. P. (2021). Dynamic EMT: A multi-tool for tumor progression. The EMBO Journal, 40(18), e108647.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larue, L., & Bellacosa, A. (2005). Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 24(50), 7443–7454.

Article  CAS  PubMed  Google Scholar 

Ekblom, P. (1989). Developmentally regulated conversion of mesenchyme to epithelium. The FASEB Journal., 3(10), 2141–2150.

Article  CAS  PubMed  Google Scholar 

Christ, B., & Ordahl, C. P. (1995). Early stages of chick somite development. Anatomy and Embryology., 191, 381–396.

Article  CAS  PubMed  Google Scholar 

Zipori, D. (2004). Mesenchymal stem cells: Harnessing cell plasticity to tissue and organ repair. Blood Cells, Molecules, and Diseases., 33(3), 211–215.

Article  CAS  Google Scholar 

Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer., 2(6), 442–454.

Article  CAS  PubMed  Google Scholar 

Tsai, J. H., & Yang, J. (2013). Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes & Development., 27(20), 2192–2206.

Article  CAS  Google Scholar 

Ye, X., & Weinberg, R. A. (2015). Epithelial–mesenchymal plasticity: A central regulator of cancer progression. Trends in Cell Biology., 25(11), 675–686.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer, K. R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S. T., et al. (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 527(7579), 472–476.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185(1–3), 7–19.

Article 

留言 (0)

沒有登入
gif