Darboux, M.G.: Sur une proposition relative aux équations linéaires. Comptes Rendus Acad. Sci. 94, 1456 (1882)
Crum, M.M.: Associated Sturm–Liouville systems. Q. J. Math. Oxf. Ser. 6(2), 121 (1955)
Article MathSciNet MATH Google Scholar
Krein, M.G.: On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials. Dokl. Akad. Nauk SSSR 113, 970 (1957)
MathSciNet MATH Google Scholar
Adler, V.E.: On a modification of Crum’s method. Theor. Math. Phys. 101, 1381 (1994)
Article MathSciNet MATH Google Scholar
Junker, G.: Supersymmetric Methods in Quantum and Statistical Physics. Springer, Berlin (1996)
Bagchi, B.K.: Supersymmetry in Quantum and Classical Physics. Chapman, Boca Raton (2001)
Andrianov, A., Cannata, F., Ioffe, M., Nishnianidze, D.: Systems with higher-order shape invariance: spectral and algebraic properties. Phys. Lett. A 266, 341 (2000)
Article ADS MathSciNet MATH Google Scholar
Fernández, D.J., Hussin, V.: Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states. J. Phys. A Math. Gen. 32, 3603 (1999)
Article ADS MathSciNet MATH Google Scholar
Gomez-Ullate, D., Kamran, N., Milson, R.: An extension of Bochner’s problem: exceptional invariant subspaces. J. Approx. Theory 162, 987 (2010)
Article MathSciNet MATH Google Scholar
Gomez-Ullate, D., Kamran, N., Milson, R.: An extended class of orthogonal polynomials defined by a Sturm–Liouville problem. J. Math. Anal. Appl. 359, 352 (2009)
Article MathSciNet MATH Google Scholar
Odake, S., Sasaki, R.: Infinitely many shape invariant potentials and new orthogonal polynomials. Phys. Lett. B 679, 414 (2009)
Article ADS MathSciNet Google Scholar
Quesne, C.: Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics. SIGMA 5, 084 (2009)
MathSciNet MATH Google Scholar
Fellows, J.M., Smith, R.A.: Factorization solution of a family of quantum nonlinear oscillators. J. Phys. A 42, 335303 (2009)
Article MathSciNet MATH Google Scholar
Quesne, C.: Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials. Mod. Phys. Lett. A 26, 1843 (2011)
Article ADS MathSciNet MATH Google Scholar
Odake, S., Sasaki, R.: Krein–Adler transformations for shape-invariant potentials and pseudo virtual states. J. Phys. A Math. Theor. 46, 245201 (2013)
Article ADS MathSciNet MATH Google Scholar
Gomez-Ullate, D., Grandati, Y., Milson, R.: Extended Krein–Adler theorem for the translationally shape invariant potentials. J. Math. Phys. 55, 043510 (2014)
Article ADS MathSciNet MATH Google Scholar
Gomez-Ullate, D., Grandati, Y., Milson, R.: Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A Math. Theor. 47, 015203 (2014)
Article ADS MathSciNet MATH Google Scholar
Gomez-Ullate, D., Kasman, A., Kuijlaars, A.B.J., Milson, R.: Recurrence relations for exceptional Hermite polynomials. J. Approx. Theor. 204, 1 (2016)
Article MathSciNet MATH Google Scholar
Gomez-Ullate, D., Grandati, Y., Milson, R.: Spectral Theory of Exceptional Hermite Polynomials, arXiv:2012.02354 [math.CA]
Marquette, I., Quesne, C.: New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials. J. Math. Phys. 54, 042102 (2013)
Article ADS MathSciNet MATH Google Scholar
Marquette, I., Quesne, C.: Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators. J. Phys. A Math. Theor. 46, 155201 (2013)
Article ADS MathSciNet MATH Google Scholar
Marquette, I., Quesne, C.: New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems. J. Math. Phys. 54, 102102 (2013)
Article ADS MathSciNet MATH Google Scholar
Marquette, I., Quesne, C.: Combined state-adding and state-deleting approaches to type III multi-step rationally extended potentials: Applications to ladder operators and superintegrability. J. Math. Phys. 55, 112103 (2014)
Article ADS MathSciNet MATH Google Scholar
Cariñena, J.F., Plyushchay, M.S.: ABC of ladder operators for rationally extended quantum harmonic oscillator systems. J. Phys. A 50(27), 275202 (2017)
Article MathSciNet MATH Google Scholar
Latini, D., Marquette, I., Zhang, Y.-Z.: Polynomial algebras of superintegrable systems separating in Cartesian coordinates from higher order ladder operators. Phys. D Nonlinear Phenom. 440, 133464 (2022)
Article MathSciNet MATH Google Scholar
Gravel, S.: Hamiltonians separable in Cartesian coordinates and third-order integrals of motion. J. Math. Phys. 45, 1003 (2004)
Article ADS MathSciNet MATH Google Scholar
Marquette, I.: Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials. J. Math. Phys. 50, 012101 (2009)
Sesma, J.: The generalized quantum isotonic oscillator. J. Phys. A Math. Theor. 43, 185303 (2010)
Article ADS MathSciNet MATH Google Scholar
Cariñena, J.F., Perelomov, A.M., Ranada, M.F., Santander, M.: A quantum exactly solvable non-linear oscillator related with the isotonic oscillator. J. Phys. A Math. Theor. 41, 085301 (2008)
Cariñena, J.F., Plyushchay, M.S.: Ground-state isolation and discrete flows in a rationally extended quantum harmonic oscillator. Phys. Rev. D 94(10), 105022 (2016)
Article ADS MathSciNet Google Scholar
Chalifour, V., Grundland, A.M.: General solution of the exceptional Hermite differential equation and its minimal surface representation. Ann. Henri Poincaré 21, 3341 (2020)
Article ADS MathSciNet MATH Google Scholar
Marquette, I., Sajedi, M., Winternitz, P.: Two-dimensional superintegrable systems from operator algebras in one dimension. J. Phys. A Math. Theor. 52(11), 115202 (2019)
Article ADS MATH Google Scholar
Filipuk, G., Ishkhangan, A., Derezinski, J.: On the derivatives of the Heun functions. J. Contemp. Math. Anal. 55, 200 (2020)
Article MathSciNet MATH Google Scholar
Marquette, I., Quesne, C.: Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57, 052101 (2016)
Article ADS MathSciNet MATH Google Scholar
Zelaya, K., Marquette, I., Hussin, V.: Third-order ladder operators, generalized Okamoto and exceptional orthogonal polynomials. J. Phys. A Math. Theor. 55, 045205 (2022)
Article ADS MathSciNet MATH Google Scholar
Derezinski, J., Ishkhanyan, A., Latosinski, A.: From Heun class equations to Painlevé equations. SIGMA 17, 056 (2021)
Comments (0)