HOXA9 transcription factor is a double-edged sword: from development to cancer progression

Ferrier, D. E., & Holland, P. W. (2001). Ancient origin of the hox gene cluster. Nature Reviews Genetics, 2(1), 33–38. https://doi.org/10.1038/35047605.

Article  CAS  PubMed  Google Scholar 

Holland, P. W. H. (2013). Evolution of homeobox genes. Wiley Interdisciplinary Reviews Developmental Biology, 2(1), 31–45. https://doi.org/10.1002/wdev.78.

Article  CAS  PubMed  Google Scholar 

Paço, A., & Freitas, R. (2019). HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics, 11(13), 1539–1552. https://doi.org/10.2217/epi-2019-0090.

Article  CAS  PubMed  Google Scholar 

Svingen, T., & Tonissen, K. F. (2006). Hox transcription factors and their elusive mammalian gene targets. Heredity, 97(2), 88–96. https://doi.org/10.1038/sj.hdy.6800847.

Article  CAS  PubMed  Google Scholar 

Tschopp, P., Tarchini, B., Spitz, F., Zakany, J., & Duboule, D. (2009). Uncoupling time and space in the collinear regulation of hox genes. PLoS Genetics, 5(3), e1000398. https://doi.org/10.1371/journal.pgen.1000398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaunt, S. J., & Strachan, L. (1996). Temporal colinearity in expression of anterior hox genes in developing chick embryos. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 207(3), 270–280. https://doi.org/10.1002/(SICI)1097-0177(199611)207:3<270::AID-AJA4>3.0.CO;2-E.

Durston, A. J. (2019). Vertebrate hox temporal collinearity: Does it exist and what is it’s function? Cell Cycle (Georgetown Tex), 18(5), 523–530. https://doi.org/10.1080/15384101.2019.1577652.

Article  CAS  PubMed  Google Scholar 

Collins, C. T., & Hess, J. L. (2016). Role of HOXA9 in Leukemia: Dysregulation, cofactors and essential targets. Oncogene, 35(9), 1090–1098. https://doi.org/10.1038/onc.2015.174.

Article  CAS  PubMed  Google Scholar 

Cai, H., Ke, Z. B., Dong, R. N., Chen, H., Lin, F., Zheng, W. C., & Xu, N. (2021). The prognostic value of homeobox A9 (HOXA9) methylation in solid tumors: A systematic review and meta-analysis. Translational cancer Research, 10(10), 4347–4354. https://doi.org/10.21037/tcr-21-765.

Article  PubMed  PubMed Central  Google Scholar 

Wellik, D. M. (2007). Hox patterning of the vertebrate axial skeleton. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 236(9), 2454–2463. https://doi.org/10.1002/dvdy.21286.

Article  CAS  PubMed  Google Scholar 

Xu, B., Geerts, D., Bu, Z., Ai, J., Jin, L., Li, Y., & Zhu, G. (2014). Regulation of endometrial receptivity by the highly expressed HOXA9, HOXA11 and HOXD10 HOX-class homeobox genes. Human Reproduction (Oxford England), 29(4), 781–790. https://doi.org/10.1093/humrep/deu004.

Article  CAS  PubMed  Google Scholar 

Yan, J., Chen, Y. X., Desmond, A., Silva, A., Yang, Y., Wang, H., & Hua, X. (2006). Cdx4 and menin coregulate Hoxa9 expression in hematopoietic cells. PloS One, 1(1), e47. https://doi.org/10.1371/journal.pone.0000047.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel, C. V., Sharangpani, R., Bandyopadhyay, S., & DiCorleto, P. E. (1999). Endothelial cells express a novel, Tumor necrosis factor-alpha-regulated variant of HOXA9. The Journal of Biological Chemistry, 274(3), 1415–1422. https://doi.org/10.1074/jbc.274.3.1415.

Article  CAS  PubMed  Google Scholar 

Takeda, A., Goolsby, C., & Yaseen, N. R. (2006). NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34 + hematopoietic cells. Cancer Research, 66(13), 6628–6637. https://doi.org/10.1158/0008-5472.CAN-06-0458.

Article  CAS  PubMed  Google Scholar 

Agrawal-Singh, S., Bagri, J., Giotopoulos, G., Azazi, D. M. A., Horton, S. J., Lopez, C. K., & Huntly, B. J. P. (2023). HOXA9 forms a repressive complex with nuclear matrix-associated protein SAFB to maintain acute Myeloid Leukemia. Blood, 141(14), 1737–1754. https://doi.org/10.1182/blood.2022016528.

Article  CAS  PubMed  Google Scholar 

Faaborg, L., Jakobsen, A., Waldstrøm, M., Petersen, C. B., Andersen, R. F., & Steffensen, K. D. (2021). HOXA9-methylated DNA as a diagnostic biomarker of ovarian malignancy. Biomarkers in Medicine, 15(15), 1309–1317. https://doi.org/10.2217/bmm-2021-0144.

Article  CAS  PubMed  Google Scholar 

Zhou, C., Li, J., Li, Q., Liu, H., Ye, D., Wu, Z., & Deng, H. (2019). The clinical significance of HOXA9 promoter hypermethylation in head and neck squamous cell carcinoma. Journal of Clinical Laboratory Analysis, 33(5), e22873. https://doi.org/10.1002/jcla.22873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, S. M., Choi, E. Y., Bae, M., Choi, J. K., & Kim, Y. J. (2017). A long-range interactive DNA methylation marker panel for the promoters of HOXA9 and HOXA10 predicts survival in Breast cancer patients. Clinical Epigenetics, 9, 73. https://doi.org/10.1186/s13148-017-0373-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarado-Ruiz, L., Martinez-Silva, M. G., Torres-Reyes, L. A., Pina-Sanchez, P., Ortiz-Lazareno, P., Bravo-Cuellar, A., & Jave-Suarez, L. F. (2016). HOXA9 is underexpressed in Cervical Cancer cells and its restoration decreases Proliferation, Migration and expression of epithelial-to-mesenchymal transition genes. Asian Pacific Journal of cancer Prevention: APJCP, 17(3), 1037–1047. https://doi.org/10.7314/apjcp.2016.17.3.1037.

Article  PubMed  Google Scholar 

Xu, Q., Zhang, Q., Dong, M., & Yu, Y. (2021). MicroRNA-638 inhibits the progression of Breast cancer through targeting HOXA9 and suppressing Wnt/β-cadherin pathway. World Journal of Surgical Oncology, 19(1), 247. https://doi.org/10.1186/s12957-021-02363-7.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Z. F., Li, G. R., Cao, C. N., Xu, Q., Wang, G. D., & Jiang, X. F. (2018). MicroRNA-1294 targets HOXA9 and has a Tumor suppressive role in osteosarcoma. European Review for Medical and Pharmacological Sciences, 22(24), 8582–8588. https://doi.org/10.26355/eurrev_201812_16621.

Article  PubMed  Google Scholar 

Chong, G. O., Jeon, H. S., Han, H. S., Son, J. W., Lee, Y. H., Hong, D. G., & Cho, Y. L. (2017). Overexpression of microRNA-196b accelerates invasiveness of Cancer cells in recurrent epithelial Ovarian Cancer through regulation of Homeobox A9. Cancer Genomics & Proteomics, 14(2), 137–141. https://doi.org/10.21873/cgp.20026.

Article  CAS  Google Scholar 

Xu, C., Li, B., Zhao, S., Jin, B., Jia, R., Ge, J., & Xu, H. (2019). MicroRNA-186-5p inhibits Proliferation and Metastasis of Esophageal Cancer by mediating HOXA9. OncoTargets and Therapy, 12, 8905–8914. https://doi.org/10.2147/OTT.S227920.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, S. M., Pang, J., Zhang, K. J., Zhou, Z. Y., & Chen, F. Y. (2021). lncRNA MIR503HG inhibits cell proliferation and promotes apoptosis in TNBC cells via the miR-224-5p/HOXA9 axis. Molecular Therapy Oncolytics, 21, 62–73. https://doi.org/10.1016/j.omto.2021.03.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benson, G. V., Nguyen, T. H., & Maas, R. L. (1995). The expression pattern of the murine Hoxa-10 gene and the sequence recognition of its homeodomain reveal specific properties of abdominal B-like genes. Molecular and Cellular Biology, 15(3), 1591–1601. https://doi.org/10.1128/MCB.15.3.1591.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, M. H., Chang, H. H., Shin, C., Cho, M., Park, D., & Park, H. W. (1998). Genomic structure and sequence analysis of human HOXA-9. DNA and cell Biology, 17(5), 407–414. https://doi.org/10.1089/dna.1998.17.407.

Article  CAS  PubMed  Google Scholar 

Popovic, R., Erfurth, F., & Zeleznik-Le, N. (2008). Transcriptional complexity of the HOXA9 locus. Blood Cells Molecules & Diseases, 40(2), 156–159. https://doi.org/10.1016/j.bcmd.2007.07.016.

Article  CAS  Google Scholar 

Fujimoto, S., Araki, K., Chisaka, O., Araki, M., Takagi, K., & Yamamura, K. (1998). Analysis of the murine Hoxa-9 cDNA: An alternatively spliced transcript encodes a truncated protein lacking the homeodomain. Gene, 209(1–2), 77–85. https://doi.org/10.1016/s0378-1119(98)00014-6.

Article  CAS  PubMed  Google Scholar 

Dintilhac, A., Bihan, R., Guerrier, D., Deschamps, S., & Pellerin, I. (2004). A conserved nonhomeodomain Hoxa9 isoform interacting with CBP is coexpressed with the typical Hoxa9 protein during embryogenesis. Gene Expression Patterns: GEP, 4(2), 215–222. https://doi.org/10.1016/j.modgep.2003.08.006.

Article  CAS  PubMed  Google Scholar 

He, M., Chen, P., Arnovitz, S., Li, Y., Huang, H., Neilly, M. B., & Li, Z. (2012). Two isoforms of HOXA9 function differently but work synergistically in human MLL-rearranged Leukemia. Blood Cells Molecules & Diseases, 49(2), 102–106. https://doi.org/10.1016/j.bcmd.2012.05.003.

Article  CAS  Google Scholar 

Di-Poï, N., Koch, U., Radtke, F., & Duboule, D. (2010). Additive and global functions of HoxA cluster genes in mesoderm derivatives. Developmental Biology, 341(2), 488–498. https://doi.org/10.1016/j.ydbio.2010.03.006.

Article  CAS  PubMed  Google Scholar 

Fromental-Ramain, C., Warot, X., Lakkaraju, S., Favier, B., Haack, H., Birling, C., & Chambon, P. (1996). Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development (Cambridge England), 122(2), 461–472. https://doi.org/10.1242/dev.122.2.461.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif