Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science. 2023;380:eabo7649.
Article CAS PubMed Google Scholar
Wrona D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol. 2006;172(1–2):38–58.
Article CAS PubMed Google Scholar
Dantzer R. Cytokine-induced sickness behavior: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500(1–3):399–411.
Article CAS PubMed Google Scholar
Udit S, Blake K, Chiu IM. Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci. 2022;23(3):157–71.
Article CAS PubMed PubMed Central Google Scholar
Ziemssen T, Kern S. Psychoneuroimmunology-cross-talk between the immune and nervous systems. J Neurol. 2007;254:8–11.
Liberti J, Engel P. The gut microbiota-brain axis of insects. Insect Sci. 2020;39:6–13.
Adamo SA. Comparative psychoneuroimmunology: evidence from the insects. Behav Cogn Neurosci Rev. 2006;5:128–40.
Zhang Z, Mu X, Cao Q, Shi Y, Hu X, Zheng H. Honeybee gut Lactobacillus modulates host learning and memory behaviors by regulating tryptophan metabolism. Nat Commun. 2022;13(1):2037–49.
Article CAS PubMed PubMed Central Google Scholar
Seo DO, O’Donnell D, Jain N, Ulrich JD, Herz J, Li Y, Holtzman DM. ApoE isoform-and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023;379:eadd1236.
Article CAS PubMed Google Scholar
Johnson KVA, Foster KR. Why does the microbiome affect behavior? Nat Rev Microbiol. 2018;16(10):647–55.
Article CAS PubMed Google Scholar
Quigley EM. Microbiota-brain-gut axis and neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2017;17:1–9.
Davidson GL, Cooke AC, Johnson CN, Quinn JL. The gut microbiome as a driver of individual variation in cognition and functional behavior. Philosophical Trans Royal Soc B. 2018;373:1–12.
Shen L, Ji H-F. Associations between gut microbiota and Alzheimer’s Disease: current evidence and future therapeutic and diagnostic perspectives. J Alzheimers Dis. 2019;68(1):25–31.
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s Disease. Cell. 2016;167(6):1469–80.
Article CAS PubMed PubMed Central Google Scholar
Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:21–49.
Article CAS PubMed PubMed Central Google Scholar
Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:246–59.
Article CAS PubMed Google Scholar
Zhu F, Guo R, Wang W, Ju Y, Wang Q, Ma Q, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry. 2020;25(11):2905–18.
Article CAS PubMed Google Scholar
Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science. 2019;366:1–17.
Philipp E, Nancy AM. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735.
Carthey AJR, Gillings MR, Blumstein DT. The extended genotype: microbially mediated olfactory communication. Trends Ecol Evol. 2018;33(11):885–94.
Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011;108(7):3047–52.
Article CAS PubMed Central Google Scholar
Matsuura K. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes Speratus. Oikos. 2011;92(1):20–6.
Zhang Z, Mu X, Cao Q, Shi Y, Hu X, Zheng H. Honeybee gut microbiota modulates host behaviors and neurological processes. Cold Spring Harbor Laboratory; 2020.
Denieu M, Mounts K, Bhojwani D, Manier MK. Two gut microbes are necessary and sufficient for normal cognition in drosophila melanogaster. BioRxiv. 2019;593723:1–18.
Johnson SJ. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the Western Hemisphere. Int J Trop Insect Sci. 1987;8(4–5–6):543–9.
Early R, González-Moreno P, Murphy ST, Day R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. BioRxiv, 2018; 391847.
Lv D, Liu X, Dong Y, Yan Z, Zhang X, Wang P, et al. Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int J Mol Sci. 2021;22(20):1–16.
Chen Y-P, Li Y-H, Sun Z-X, Du E-W, Lu Z-H, Li H, Gui FR. Effects of host plants on bacterial community structure in larvae midgut of Spodoptera frugiperda. Insects. 2022;13(4):1–13.
Higuita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid-Restrepo GE, Moreno-Herrera CX. Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key Enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. J Insect Sci. 2021;21(6):1–11.
Li D-D, Li JY, Hu Z-Q, Liu T-X, Zhang S. Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects. 2022;13(9):762–77.
Article PubMed PubMed Central Google Scholar
Chen J, Ma Y, Huang S, Li J, Zhang Y, Wang H, Pang R. The dynamics of the microbial community in fall armyworm Spodoptera frugiperda during a life cycle. Entomol Exp Appl. 2023;0:1–12.
Chen Y, Zhou H, Lai Y, Chen Q, Yu X-Q, Wang X. Gut microbiota dysbiosis influences metabolic homeostasis in Spodoptera frugiperda. Front Microbiol. 2021;12:1–13.
Lü D, Dong Y, Yan Z, Liu X, Zhang Y, Yang D, et al. Dynamics of gut microflora across the life cycle of Spodoptera frugiperda and its effects on the feeding and growth of larvae. Pest Manag Sci. 2023;79(1):173–82.
Gomes AFF, Omoto C, Cônsoli FL. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J Pest Sci. 2020;93(2):833–51.
Jia B, Liu Y, Zhu Y-C, Liu X, Gao C, Shen J. Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pest Manage Science: Former Pesticide Sci. 2009;65(9):996–1002.
Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. Impact of gut microbiota on the fly’s germ line. Nat Commun. 2016;7(1):11280–91.
Article CAS PubMed PubMed Central Google Scholar
GuoM,WuF,HaoG,QiQ,LiR,LiN,etal.Bacillus subtilis improves immunity and disease resistance in rabbits.Frontiers in immunology,2017,8:354.
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultrafast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–90.
Edgar RC. Uparse: highly accurate otu sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.
Article CAS PubMed Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
Article CAS PubMed PubMed Central Google Scholar
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner. F O. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.
Article CAS PubMed PubMed Central Google Scholar
Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(1):259–64.
Wickham H. ggplot2. Wiley Interdisciplinary Reviews. Comput Stat. 2011;3(2):180–5.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Knight R. Caparose Jgkj, stombaugh j, bittinger k, bushman fd. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Comments (0)