Gut dysbacteriosis induces expression differences in the adult head transcriptome of Spodoptera frugiperda in a sex-specific manner

Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science. 2023;380:eabo7649.

Article  CAS  PubMed  Google Scholar 

Wrona D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol. 2006;172(1–2):38–58.

Article  CAS  PubMed  Google Scholar 

Dantzer R. Cytokine-induced sickness behavior: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500(1–3):399–411.

Article  CAS  PubMed  Google Scholar 

Udit S, Blake K, Chiu IM. Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci. 2022;23(3):157–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziemssen T, Kern S. Psychoneuroimmunology-cross-talk between the immune and nervous systems. J Neurol. 2007;254:8–11.

Article  Google Scholar 

Liberti J, Engel P. The gut microbiota-brain axis of insects. Insect Sci. 2020;39:6–13.

Google Scholar 

Adamo SA. Comparative psychoneuroimmunology: evidence from the insects. Behav Cogn Neurosci Rev. 2006;5:128–40.

Article  PubMed  Google Scholar 

Zhang Z, Mu X, Cao Q, Shi Y, Hu X, Zheng H. Honeybee gut Lactobacillus modulates host learning and memory behaviors by regulating tryptophan metabolism. Nat Commun. 2022;13(1):2037–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo DO, O’Donnell D, Jain N, Ulrich JD, Herz J, Li Y, Holtzman DM. ApoE isoform-and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023;379:eadd1236.

Article  CAS  PubMed  Google Scholar 

Johnson KVA, Foster KR. Why does the microbiome affect behavior? Nat Rev Microbiol. 2018;16(10):647–55.

Article  CAS  PubMed  Google Scholar 

Quigley EM. Microbiota-brain-gut axis and neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2017;17:1–9.

Article  CAS  Google Scholar 

Davidson GL, Cooke AC, Johnson CN, Quinn JL. The gut microbiome as a driver of individual variation in cognition and functional behavior. Philosophical Trans Royal Soc B. 2018;373:1–12.

Article  Google Scholar 

Shen L, Ji H-F. Associations between gut microbiota and Alzheimer’s Disease: current evidence and future therapeutic and diagnostic perspectives. J Alzheimers Dis. 2019;68(1):25–31.

Article  PubMed  Google Scholar 

Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s Disease. Cell. 2016;167(6):1469–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:21–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:246–59.

Article  CAS  PubMed  Google Scholar 

Zhu F, Guo R, Wang W, Ju Y, Wang Q, Ma Q, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry. 2020;25(11):2905–18.

Article  CAS  PubMed  Google Scholar 

Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science. 2019;366:1–17.

Article  Google Scholar 

Philipp E, Nancy AM. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735.

Article  Google Scholar 

Carthey AJR, Gillings MR, Blumstein DT. The extended genotype: microbially mediated olfactory communication. Trends Ecol Evol. 2018;33(11):885–94.

Article  PubMed  Google Scholar 

Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011;108(7):3047–52.

Article  CAS  PubMed Central  Google Scholar 

Matsuura K. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes Speratus. Oikos. 2011;92(1):20–6.

Article  Google Scholar 

Zhang Z, Mu X, Cao Q, Shi Y, Hu X, Zheng H. Honeybee gut microbiota modulates host behaviors and neurological processes. Cold Spring Harbor Laboratory; 2020.

Denieu M, Mounts K, Bhojwani D, Manier MK. Two gut microbes are necessary and sufficient for normal cognition in drosophila melanogaster. BioRxiv. 2019;593723:1–18.

Google Scholar 

Johnson SJ. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the Western Hemisphere. Int J Trop Insect Sci. 1987;8(4–5–6):543–9.

Article  Google Scholar 

Early R, González-Moreno P, Murphy ST, Day R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. BioRxiv, 2018; 391847.

Lv D, Liu X, Dong Y, Yan Z, Zhang X, Wang P, et al. Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int J Mol Sci. 2021;22(20):1–16.

Article  Google Scholar 

Chen Y-P, Li Y-H, Sun Z-X, Du E-W, Lu Z-H, Li H, Gui FR. Effects of host plants on bacterial community structure in larvae midgut of Spodoptera frugiperda. Insects. 2022;13(4):1–13.

Article  Google Scholar 

Higuita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid-Restrepo GE, Moreno-Herrera CX. Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key Enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. J Insect Sci. 2021;21(6):1–11.

Article  Google Scholar 

Li D-D, Li JY, Hu Z-Q, Liu T-X, Zhang S. Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects. 2022;13(9):762–77.

Article  PubMed  PubMed Central  Google Scholar 

Chen J, Ma Y, Huang S, Li J, Zhang Y, Wang H, Pang R. The dynamics of the microbial community in fall armyworm Spodoptera frugiperda during a life cycle. Entomol Exp Appl. 2023;0:1–12.

Google Scholar 

Chen Y, Zhou H, Lai Y, Chen Q, Yu X-Q, Wang X. Gut microbiota dysbiosis influences metabolic homeostasis in Spodoptera frugiperda. Front Microbiol. 2021;12:1–13.

Google Scholar 

Lü D, Dong Y, Yan Z, Liu X, Zhang Y, Yang D, et al. Dynamics of gut microflora across the life cycle of Spodoptera frugiperda and its effects on the feeding and growth of larvae. Pest Manag Sci. 2023;79(1):173–82.

Article  PubMed  Google Scholar 

Gomes AFF, Omoto C, Cônsoli FL. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J Pest Sci. 2020;93(2):833–51.

Article  Google Scholar 

Jia B, Liu Y, Zhu Y-C, Liu X, Gao C, Shen J. Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pest Manage Science: Former Pesticide Sci. 2009;65(9):996–1002.

Article  CAS  Google Scholar 

Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. Impact of gut microbiota on the fly’s germ line. Nat Commun. 2016;7(1):11280–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

GuoM,WuF,HaoG,QiQ,LiR,LiN,etal.Bacillus subtilis improves immunity and disease resistance in rabbits.Frontiers in immunology,2017,8:354.

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultrafast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–90.

Article  Google Scholar 

Edgar RC. Uparse: highly accurate otu sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.

Article  CAS  PubMed  Google Scholar 

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner. F O. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(1):259–64.

Article  Google Scholar 

Wickham H. ggplot2. Wiley Interdisciplinary Reviews. Comput Stat. 2011;3(2):180–5.

Article  Google Scholar 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Knight R. Caparose Jgkj, stombaugh j, bittinger k, bushman fd. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif