Angulo FJ, Nargund VN, Chiller TC. Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J Vet Med B Infect Dis Vet Public Health. 2004;51(8–9):374–9. https://doi.org/10.1111/j.1439-0450.2004.00789.x.
Article CAS PubMed Google Scholar
Salinas L, Cardenas P, Johnson TJ, Vasco K, Graham J, Trueba G. Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. mSphere. 2019;4(3):e00316–19. https://doi.org/10.1128/mSphere.00316-19.
Article CAS PubMed PubMed Central Google Scholar
Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718–33. https://doi.org/10.1128/CMR.00002-11.
Article CAS PubMed PubMed Central Google Scholar
Akond MA, Hassan SMR, Alam S, Shirin M. Antibiotic resistance of Escherichia Coli isolated from poultry and poultry environment of Bangladesh. Am J Environ Sci. 2009;5(1):47–52. https://doi.org/10.3844/ajessp.2009.47.52.
Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev Inst Med Trop Sao Paulo. 2014;56(4):341–6. https://doi.org/10.1590/s0036-46652014000400012.
Article PubMed PubMed Central Google Scholar
Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557–96. https://doi.org/10.1128/CMR.00064-16.
Article CAS PubMed PubMed Central Google Scholar
WHO. Critically important antimicrobials for human medicine. 2019.
Liu Y, Liu JH. Monitoring colistin resistance in food animals, an urgent threat. Expert Rev Anti Infect Ther. 2018;16(6):443–6. https://doi.org/10.1080/14787210.2018.1481749.
Article CAS PubMed Google Scholar
Poirel L, Nordmann P. Emerging plasmid-encoded colistin resistance: the animal world as the culprit? J Antimicrob Chemother. 2016;71(8):2326–7. https://doi.org/10.1093/jac/dkw074.
Article CAS PubMed Google Scholar
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8. https://doi.org/10.1016/S1473-3099(15)00424-7.
Article CAS PubMed Google Scholar
Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017;72(12):3317–24. https://doi.org/10.1093/jac/dkx327.
Article CAS PubMed Google Scholar
Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017;22(31):30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589.
Article PubMed PubMed Central Google Scholar
Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016;21(27):30280. https://doi.org/10.2807/1560-7917.ES.2016.21.27.30280.
Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7(1):122. https://doi.org/10.1038/s41426-018-0124-z.
Article CAS PubMed PubMed Central Google Scholar
Kempf I, Jouy E, Chauvin C. Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents. 2016;48(6):598–606. https://doi.org/10.1016/j.ijantimicag.2016.09.016.
Article CAS PubMed Google Scholar
Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–35. https://doi.org/10.1016/j.ijantimicag.2016.11.029.
Article CAS PubMed Google Scholar
Wang Y, Xu C, Zhang R, Chen Y, Shen Y, Hu F, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis. 2020;20(10):1161–71. https://doi.org/10.1016/S1473-3099(20)30149-3.
Article CAS PubMed Google Scholar
Valiakos G, Kapna I. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. A systematic review. Vet Sci. 2021;8(11):265. https://doi.org/10.3390/vetsci8110265.
Article PubMed PubMed Central Google Scholar
Aklilu E, Raman K. MCR-1 gene encoded colistin-resistant Escherichia coli in raw chicken meat and bean sprouts in Malaysia. Int J Microbiol. 2020;2020:8853582. https://doi.org/10.1155/2020/8853582.
Article CAS PubMed PubMed Central Google Scholar
Aklilu E, Harun A, Singh KKB. Molecular characterization of bla(NDM), bla(OXA-48), mcr-1 and bla(TEM-52) positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia. BMC Vet Res. 2022;18(1):190. https://doi.org/10.1186/s12917-022-03292-7.
Article CAS PubMed PubMed Central Google Scholar
Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): disease, carriage and clones. J Infect. 2015;71(6):615–26. https://doi.org/10.1016/j.jinf.2015.09.009.
Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555–8. https://doi.org/10.1128/AEM.66.10.4555-4558.2000.
Article CAS PubMed PubMed Central Google Scholar
Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli: “the other bad E coli.” J Lab Clin Med. 2002;139(3):155–62. https://doi.org/10.1067/mlc.2002.121550.
Article CAS PubMed Google Scholar
Yu J, Sun Z, Liu W, Xi X, Song Y, Xu H, et al. Multilocus sequence typing of Streptococcus thermophilus from naturally fermented dairy foods in China and Mongolia. BMC Microbiol. 2015;15(1):236. https://doi.org/10.1186/s12866-015-0551-0.
Article CAS PubMed PubMed Central Google Scholar
Lu J, Sanchez S, Hofacre C, Maurer JJ, Harmon BG, Lee MD. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl Environ Microbiol. 2003;69(2):901–8. https://doi.org/10.1128/AEM.69.2.901-908.2003.
Article CAS PubMed PubMed Central Google Scholar
Mandal AK, Talukder S, Hasan MM, Tasmim ST, Parvin MS, Ali MY, et al. Epidemiology and antimicrobial resistance of Escherichia coli in broiler chickens, farmworkers, and farm sewage in Bangladesh. Vet Med Sci. 2022;8(1):187–99. https://doi.org/10.1002/vms3.664.
Article CAS PubMed Google Scholar
Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J. 2009;41(2):117–22.
Alnahass R, Khaliel S, Ellakany H, Ibrahim M. Comparison between bacteriological isolation and molecular detection of E. coli from chickens suffering from colibacillosis and/or diarrhea. Alex J Vet Sci. 2017;49(2). https://doi.org/10.5455/ajvs.219057.
Yu KX, Thong KL. Multiplex PCR for simultaneous detection of virulence genes in Escherichia coli. Malays J Sci. 2009;28(1):1–14.
Elmi SA, Simons D, Elton L, Haider N, Abdel Hamid MM, Shuaib YA, et al. Identification of risk factors associated with resistant Escherichia coli isolates from poultry farms in the east coast of Peninsular Malaysia: a cross sectional study. Antibiotics (Basel). 2021;10(2):117. https://doi.org/10.3390/antibiotics10020117.
Article CAS PubMed Google Scholar
Aliyu AB, Saleha AA, Jalila A, Zunita Z. Risk factors and spatial distribution of extended spectrum beta-lactamase-producing- Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study. BMC Public Health. 2016;16(1):699. https://doi.org/10.1186/s12889-016-3377-2.
Article CAS PubMed PubMed Central Google Scholar
CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2021.
Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018;23(6):29–39. https://doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672.
Borowiak M, Baumann B, Fischer J, Thomas K, Deneke C, Hammerl JA, et al. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011–2018) in Germany. Front Microbiol. 2020;11(80):80. https://doi.org/10.3389/fmicb.2020.00080.
Comments (0)