Huang P, Zhang Y, Xiao K, Jiang F, Wang H, Tang D, et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome. 2018;6:211.
Article PubMed PubMed Central Google Scholar
Rychlik I. Composition and function of chicken gut microbiota. Animals. 2020;10:103.
Article PubMed PubMed Central Google Scholar
Rinttilä T, Apajalahti J. Intestinal microbiota and metabolites - Implications for broiler chicken health and performance. J Appl Poult Res. 2013;22:647–58.
Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One. 2014;9:e91941.
Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota: Importance and detection technology. Front Vet Sci. 2018;5:254.
EFSA (European Food Safety Authority). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018;16:e05182
Sethiya NK. Review on natural growth promoters available for improving gut health of poultry: An alternative to antibiotic growth promoters. Asian J Poultry Sci. 2016;10:1–29.
Rafiq K, Tofazzal Hossain M, Ahmed R, Hasan MM, Islam R, Hossen MI, et al. Role of Different growth enhancers as alternative to in-feed antibiotics in poultry industry. Front Vet Sci. 2022;8:1–9.
Abbas Hilmi HT, Surakka A, Apajalahti J, Saris PEJ. Identification of the most abundant Lactobacillus species in the crop of 1- and 5-week-old broiler chickens. Appl Environ Microbiol. 2007;73:7867–73.
Article PubMed PubMed Central Google Scholar
Wang L, Fang M, Hu Y, Yang Y, Yang M, Chen Y. Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering. Acta Biochim Biophys Sin (Shanghai). 2014;46:612–9.
Walter J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl Environ Microbiol. 2008;74:4985–96.
Article CAS PubMed PubMed Central Google Scholar
Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Perez-Munoz M, et al. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev. 2017;41:1–22.
Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 2011;7:e1001314.
Nakphaichit M, Thanomwongwattana S, Phraephaisarn C, Sakamoto N, Keawsompong S, Nakayama J, et al. The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poult Sci. 2011;90:2753–65.
Article CAS PubMed Google Scholar
Nakphaichit M, Sobanbua S, Siemuang S, Vongsangnak W, Nakayama J, Nitisinprasert S. Protective effect of Lactobacillus reuteri KUB-AC5 against Salmonella enteritidis challenge in chickens. Benef Microbes. 2019;10:43–54.
Article CAS PubMed Google Scholar
Schneitz C. Competitive exclusion in poultry - 30 years of research. Food Control. 2005;16 8 SPEC. ISS.:657–67.
Hou C, Zeng X, Yang F, Liu H, Qiao S. Study and use of the probiotic Lactobacillus reuteri in pigs: A review. J Anim Sci Biotechnol. 2015;6:1–8.
Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 2007;7:101.
Article PubMed PubMed Central Google Scholar
Asare PT, Greppi A, Stettler M, Schwab C, Stevens MJA, Lacroix C. Decontamination of minimally-processed fresh lettuce using reuterin produced by Lactobacillus reuteri. Front Microbiol. 2018;9:1–12.
Asare PT, Zurfluh K, Greppi A, Lynch D, Schwab C, Stephan R, et al. Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter spp. isolates. Microorganisms. 2020;8:78.
Article CAS PubMed Google Scholar
Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:1–12.
Ramirez Garcia A, Zhang J, Greppi A, Constancias F, Wortmann E, Wandres M, et al. Impact of manipulation of glycerol/diol dehydratase activity on intestinal microbiota ecology and metabolism. Environ Microbiol. 2021;23:1765–79.
Article CAS PubMed Google Scholar
Walter J, Britton RA, Roos S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A. 2011;108 Supplement_1:4645–52.
Greppi A, Asare PT, Schwab C, Zemp N, Stephan R, Lacroix C. Isolation and comparative genomic analysis of reuterin-producing Lactobacillus reuteri from the chicken gastrointestinal tract. Front Microbiol. 2020;11:1166.
Article PubMed PubMed Central Google Scholar
Vollenweider S, Evers S, Zurbriggen K, Lacroix C. Unraveling the hydroxypropionaldehyde (HPA) system: An active antimicrobial agent against human pathogens. J Agric Food Chem. 2010;58:10315–22.
Article CAS PubMed Google Scholar
Dozier IWA, Kerr BJ, Branton SL. Apparent metabolizable energy of crude glycerin originating from different sources in broiler chickens. Poult Sci. 2011;90:2528–34.
Article CAS PubMed Google Scholar
Groesbeck CN, McKinney LJ, DeRouchey JM, Tokach MD, Goodband RD, Dritz SS, et al. Effect of crude glycerol on pellet mill production and nursery pig growth performance. J Anim Sci. 2008;86:2228–36.
Article CAS PubMed Google Scholar
Topal E, Ozdogan M. Effects of glycerol on the growth performance, internal organ weights, and drumstick muscle of broilers. J Appl Poultry Res. 2013;22:146–51.
Wang A, Anderson D, Rathgeber B. Using different levels of glycerine, glucose, or sucrose in broiler starter diets to overcome negative effects of delayed feed access on growth performance. Can J Anim Sci. 2018;98:311–24.
Asare PT, Greppi A, Pennacchia A, Brenig K, Geirnaert A, Schwab C, et al. In vitro modeling of chicken cecal microbiota ecology and metabolism using the PolyFermS platform. Front Microbiol. 2021;12:3791.
Engels C, Schwab C, Zhang J, Stevens MJA, Bieri C, Ebert M-O, et al. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. in revision. Nat Publishing Group. 2016;6:1–13.
Casas IA, Dobrogosz WJ. Validation of the Probiotic Concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb Ecol Health Dis. 2000;12:247–85.
Cleusix V, Lacroix C, Vollenweider S, Le Blay G. Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol. 2008;63:56–64.
Article CAS PubMed Google Scholar
Yang X, Yin F, Yang Y, Lepp D, Yu H, Ruan Z, et al. Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers. Sci Rep. 2018;8:1–12.
Dishisha T, Pereyra LP, Pyo S-H, Britton RA, Hatti-Kaul R. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb Cell Fact. 2014;13:76.
Article PubMed PubMed Central Google Scholar
Biebl H, Menzel K, Zeng AP, Deckwer WD. Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol. 1999;52:289–97.
Article CAS PubMed Google Scholar
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The chicken gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360:100–12.
Article CAS PubMed Google Scholar
Stanley D, Hughes RJ, Geier MS, Moore RJ. Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: Challenges presented for the identification of performance enhancing probiotic bacteria. Front Microbiol. 2016;7:1–13.
Zhang J, Lacroix C, Wortmann E, Ruscheweyh HJ, Sunagawa S, Sturla SJ, et al. Gut microbial beta-glucuronidase and glycerol/diol dehydratase activity contribute to dietary heterocyclic amine biotransformation. BMC Microbiol. 2019;19:1–14.
Hu Z, Guo Y. Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Anim Feed Sci Technol. 2007;132:240–9.
Jerzsele A, Szeker K, Csizinszky R, Gere E, Jakab C, Mallo JJ, et al. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult Sci. 2012;91:837–43.
Article CAS PubMed Google Scholar
Leeson S, Namkung H, Antongiovanni M, Lee EH. Effect of butyric acid on the performance and carcass yield of broiler chickens. Poult Sci. 2005;84:1418–22.
Fernández-Rubio C, Ordóñez C, Abad-González J, Garcia-Gallego A, Honrubia MP, Mallo JJ, et al. Butyric acid-based feed additives help protect broiler chickens from Salmonella enteritidis infection. Poult Sci. 2009;88:943–8.
Zhou ZY, Packialakshmi B, Makkar SK, Dridi S, Rath NC. Effect of butyrate on immune response of a chicken macrophage cell line. Vet Immunol Immunopathol. 2014;162:24–32.
Article CAS PubMed Google Scholar
Bedford A, Gong J. Implications of butyrate and its derivatives f
Comments (0)