Polyamines: their significance for maintaining health and contributing to diseases

Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 2001;58:244–58. https://doi.org/10.1007/pl00000852.

Article  Google Scholar 

Wallace HM. The polyamines: past, present and future. Essays Biochem. 2009;46:1–9. https://doi.org/10.1042/bse0460001.

Article  Google Scholar 

Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J. 2003;376:1–14. https://doi.org/10.1042/bj20031327.

Article  Google Scholar 

Gerner EW, Meyskens FL Jr. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer. 2004;4:781–92. https://doi.org/10.1038/nrc1454.

Article  Google Scholar 

Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life. 2009;61:880–94. https://doi.org/10.1002/iub.230.

Article  Google Scholar 

Đorđievski S, Vukašinović EL, Čelić TV, Pihler I, Kebert M, Kojić D, Purać J. Spermidine dietary supplementation and polyamines level in reference to survival and lifespan of honey bees. Sci Rep. 2023;13:4329. https://doi.org/10.1038/s41598-023-31456-4.

Article  Google Scholar 

Madeo F, Eisenberg T, Büttner S, Ruckenstuhl C, Kroemer G. Spermidine: a novel autophagy inducer and longevity elixir. Autophagy. 2010;6:160–2. https://doi.org/10.4161/auto.6.1.10600.

Article  Google Scholar 

Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY). 2011;3:716–32. https://doi.org/10.18632/aging.100361.

Article  Google Scholar 

Handa AK, Fatima T, Mattoo AK. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease. Front Chem. 2018;6:10. https://doi.org/10.3389/fchem.2018.00010.

Article  Google Scholar 

Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, Vincenzetti S, Mignini F, Napolioni V. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15:590–5. https://doi.org/10.1089/rej.2012.1349.

Article  Google Scholar 

Levêque J, Foucher F, Bansard JY, Havouis R, Grall JY, Moulinoux JP. Polyamine profiles in tumor, normal tissue of the homologous breast, blood, and urine of breast cancer sufferers. Breast Cancer Res Treat. 2000;60(2):99–105. https://doi.org/10.1023/a:1006319818530.

Article  Google Scholar 

Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14. https://doi.org/10.1038/ncb1975.

Article  Google Scholar 

Pegg AE. Toxicity of polyamines and their metabolic products. Chem Res Toxicol. 2013;26:1782–800. https://doi.org/10.1021/tx400316s.

Article  Google Scholar 

Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 2010;42:39–51. https://doi.org/10.1016/j.biocel.2009.07.009.

Article  Google Scholar 

Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol. 2015;427:3389–406. https://doi.org/10.1016/j.jmb.2015.06.020.

Article  Google Scholar 

Casero RA, Pegg AE. Polyamine catabolism and disease. Biochem J. 2009;421:323–38. https://doi.org/10.1042/bj20090598.

Article  Google Scholar 

Nakanishi S, Cleveland JL (2021) Polyamine Homeostasis in Development and Disease. Med Sci (Basel). 9. https://doi.org/10.3390/medsci9020028.

Zahedi K, Barone S, Soleimani M (2022) Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. Med Sci (Basel). 10. https://doi.org/10.3390/medsci10030038.

Casero RA Jr, Murray Stewart T, Pegg AE. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer. 2018;18:681–95. https://doi.org/10.1038/s41568-018-0050-3.

Article  Google Scholar 

Holbert CE, Cullen MT, Casero RA Jr, Stewart TM. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat Rev Cancer. 2022;22:467–80. https://doi.org/10.1038/s41568-022-00473-2.

Article  Google Scholar 

Wu H, Fu B, Sun P, Xiao C, Liu JH. A NAC Transcription Factor Represses Putrescine Biosynthesis and Affects Drought Tolerance. Plant Physiol. 2016;172:1532–47. https://doi.org/10.1104/pp.16.01096.

Article  Google Scholar 

Thongbhubate K, Irie K, Sakai Y, Itoh A, Suzuki H. Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12. AMB Express. 2021;11:168. https://doi.org/10.1186/s13568-021-01330-5.

Article  Google Scholar 

Coleman CS, Hu G, Pegg AE. Putrescine biosynthesis in mammalian tissues. Biochem J. 2004;379(Pt 3):849–55. https://doi.org/10.1042/BJ20040035.

Article  Google Scholar 

Wang X, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW. Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod. 2014;90:84. https://doi.org/10.1095/biolreprod.113.114637.

Article  Google Scholar 

Pegg AE. Regulation of ornithine decarboxylase. J Biol Chem. 2006;281:14529–32. https://doi.org/10.1074/jbc.R500031200.

Article  Google Scholar 

Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA. Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem. 2007;282:27115–25. https://doi.org/10.1074/jbc.M704066200.

Article  Google Scholar 

Pegg AE, McCann PP. Polyamine metabolism and function. Am J Physiol. 1982;243:C212–21. https://doi.org/10.1152/ajpcell.1982.243.5.C212.

Article  Google Scholar 

Ikeguchi Y, Bewley MC, Pegg AE. Aminopropyltransferases: function, structure and genetics. J Biochem. 2006;139:1–9. https://doi.org/10.1093/jb/mvj019.

Article  Google Scholar 

Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, Pegg AE, Plotnikov AN. Structure and mechanism of spermidine synthases. Biochemistry. 2007;46:8331–9. https://doi.org/10.1021/bi602498k.

Article  Google Scholar 

Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN. Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J Biol Chem. 2008;283:16135–46. https://doi.org/10.1074/jbc.M710323200.

Article  Google Scholar 

Tang B, Lee HO, Gupta S, Wang L, Kurimchak AM, Duncan JS, Kruger WD. Extracellular 5’-methylthioadenosine inhibits intracellular symmetric dimethylarginine protein methylation of FUSE-binding proteins. J Biol Chem. 2022;298:102367. https://doi.org/10.1016/j.jbc.2022.102367.

Article  Google Scholar 

Seiler N. Catabolism of polyamines. Amino Acids. 2004;26:217–33. https://doi.org/10.1007/s00726-004-0070-z.

Article  Google Scholar 

Wang Y, Casero RA Jr. Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J Biochem. 2006;139:17–25. https://doi.org/10.1093/jb/mvj021.

Article  Google Scholar 

Wang Y, Hacker A, Murray-Stewart T, Frydman B, Valasinas A, Fraser AV, Woster PM, Casero RA Jr. Properties of recombinant human N1-acetylpolyamine oxidase (hPAO): potential role in determining drug sensitivity. Cancer Chemother Pharmacol. 2005;56:83–90. https://doi.org/10.1007/s00280-004-0936-5.

Article  Google Scholar 

Wu T, Ling KQ, Sayre LM, McIntire WS. Inhibition of murine N1-acetylated polyamine oxidase by an acetylenic amine and the allenic amine, MDL 72527. Biochem Biophys Res Commun. 2005;326:483–90. https://doi.org/10.1016/j.bbrc.2004.11.054.

Article  Google Scholar 

Takao K, Shibata S, Ozawa T, Wada M, Sugitia Y, Samejima K, Shirahata A. A conceptual model of the polyamine binding site of N1-acetylpolyamine oxidase developed from a study of polyamine derivatives. Amino Acids. 2009;37:401–5. https://doi.org/10.1007/s00726-008-0168-9.

Article  Google Scholar 

Henderson Pozzi M, Gawandi V, Fitzpatrick PF. pH dependence of a mammalian polyamine oxidase: insights into substrate specificity and the role of lysine 315. Biochemistry. 2009;48:1508–16. https://doi.org/10.1021/bi802227m.

Article  Google Scholar 

Pegg AE. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab. 2008;294:E995–1010. https://doi.org/10.1152/ajpendo.90217.2008.

Article  Google Scholar 

Uemura T, Akasaka Y, Ikegaya H. Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon. 2020;6:e05031. https://doi.org/10.1016/j.heliyon.2020.e05031.

Article  Google Scholar 

Yoshida M, Tomitori H, Machi Y, Hagihara M, Higashi K, Goda H, Ohya T, Niitsu M, Kashiwagi K, Igarashi K. Acrolein toxicity: Comparison with reactive oxygen species. Biochem Biophys Res Commun. 2009;378:313–8. https://doi.org/10.1016/j.bbrc.2008.11.054.

Article  Google Scholar 

Igarashi K, Ueda S, Yoshida K, Kashiwagi K. Polyamines in renal failure. Amino Acids. 2006;31:477–83. https://doi.org/10.1007/s00726-006-0264-7.

Article  Google Scholar 

Masuko T, Takao K, Samejima K, Shirahata A, Igarashi K, Casero RA Jr, Kizawa Y, Sugita Y. N(1)-Nonyl-1,4-diaminobutane ameliorates brain infarction size in photochemically induced thrombosis model mice. Neurosci Lett. 2018;672:118–22. https://doi.org/10.1016/j.neulet.2018.01.054.

Article  Google Scholar 

Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K. Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke. 2005;36:2609–13. https://doi.org/10.1161/01.STR.0000190004.36793.2d.

Article  Google Scholar 

Madeo F, Eisenberg T, Pietrocola F, Kroemer G (2018) Spermidine in health and disease. Science. 359. https://doi.org/10.1126/science.aan2788.

Seiler N. Polyamine metabolism. Digestion. 1990;46(Suppl 2):319–30. https://doi.org/10.1159/000200405.

Article  Google Scholar 

Sarhan S, Knodgen B, Seiler N. The gastrointestinal tract as polyamine source for tumor growth. Anticancer Res. 1989;9:215–23.

Google Scholar 

Cipolla B, Guillí F, Moulinoux JP. Polyamine-reduced diet in metastatic hormone-refractory prostate cancer (HRPC) patients. Biochem Soc Trans. 2003;31:384–7. https://doi.org/10.1042/bst0310384.

Article  Google Scholar 

Bardocz S, Brown DS, Grant G, Pusztai A. Luminal and basolateral polyamine uptake by rat small intestine stimulated to grow by Phaseolus vulgaris lectin phytohaemagglutinin in vivo. Biochim Biophys Acta. 1990;103

留言 (0)

沒有登入
gif