Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 2001;58:244–58. https://doi.org/10.1007/pl00000852.
Wallace HM. The polyamines: past, present and future. Essays Biochem. 2009;46:1–9. https://doi.org/10.1042/bse0460001.
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J. 2003;376:1–14. https://doi.org/10.1042/bj20031327.
Gerner EW, Meyskens FL Jr. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer. 2004;4:781–92. https://doi.org/10.1038/nrc1454.
Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life. 2009;61:880–94. https://doi.org/10.1002/iub.230.
Đorđievski S, Vukašinović EL, Čelić TV, Pihler I, Kebert M, Kojić D, Purać J. Spermidine dietary supplementation and polyamines level in reference to survival and lifespan of honey bees. Sci Rep. 2023;13:4329. https://doi.org/10.1038/s41598-023-31456-4.
Madeo F, Eisenberg T, Büttner S, Ruckenstuhl C, Kroemer G. Spermidine: a novel autophagy inducer and longevity elixir. Autophagy. 2010;6:160–2. https://doi.org/10.4161/auto.6.1.10600.
Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY). 2011;3:716–32. https://doi.org/10.18632/aging.100361.
Handa AK, Fatima T, Mattoo AK. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease. Front Chem. 2018;6:10. https://doi.org/10.3389/fchem.2018.00010.
Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, Vincenzetti S, Mignini F, Napolioni V. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15:590–5. https://doi.org/10.1089/rej.2012.1349.
Levêque J, Foucher F, Bansard JY, Havouis R, Grall JY, Moulinoux JP. Polyamine profiles in tumor, normal tissue of the homologous breast, blood, and urine of breast cancer sufferers. Breast Cancer Res Treat. 2000;60(2):99–105. https://doi.org/10.1023/a:1006319818530.
Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14. https://doi.org/10.1038/ncb1975.
Pegg AE. Toxicity of polyamines and their metabolic products. Chem Res Toxicol. 2013;26:1782–800. https://doi.org/10.1021/tx400316s.
Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 2010;42:39–51. https://doi.org/10.1016/j.biocel.2009.07.009.
Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol. 2015;427:3389–406. https://doi.org/10.1016/j.jmb.2015.06.020.
Casero RA, Pegg AE. Polyamine catabolism and disease. Biochem J. 2009;421:323–38. https://doi.org/10.1042/bj20090598.
Nakanishi S, Cleveland JL (2021) Polyamine Homeostasis in Development and Disease. Med Sci (Basel). 9. https://doi.org/10.3390/medsci9020028.
Zahedi K, Barone S, Soleimani M (2022) Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. Med Sci (Basel). 10. https://doi.org/10.3390/medsci10030038.
Casero RA Jr, Murray Stewart T, Pegg AE. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer. 2018;18:681–95. https://doi.org/10.1038/s41568-018-0050-3.
Holbert CE, Cullen MT, Casero RA Jr, Stewart TM. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat Rev Cancer. 2022;22:467–80. https://doi.org/10.1038/s41568-022-00473-2.
Wu H, Fu B, Sun P, Xiao C, Liu JH. A NAC Transcription Factor Represses Putrescine Biosynthesis and Affects Drought Tolerance. Plant Physiol. 2016;172:1532–47. https://doi.org/10.1104/pp.16.01096.
Thongbhubate K, Irie K, Sakai Y, Itoh A, Suzuki H. Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12. AMB Express. 2021;11:168. https://doi.org/10.1186/s13568-021-01330-5.
Coleman CS, Hu G, Pegg AE. Putrescine biosynthesis in mammalian tissues. Biochem J. 2004;379(Pt 3):849–55. https://doi.org/10.1042/BJ20040035.
Wang X, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW. Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod. 2014;90:84. https://doi.org/10.1095/biolreprod.113.114637.
Pegg AE. Regulation of ornithine decarboxylase. J Biol Chem. 2006;281:14529–32. https://doi.org/10.1074/jbc.R500031200.
Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA. Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem. 2007;282:27115–25. https://doi.org/10.1074/jbc.M704066200.
Pegg AE, McCann PP. Polyamine metabolism and function. Am J Physiol. 1982;243:C212–21. https://doi.org/10.1152/ajpcell.1982.243.5.C212.
Ikeguchi Y, Bewley MC, Pegg AE. Aminopropyltransferases: function, structure and genetics. J Biochem. 2006;139:1–9. https://doi.org/10.1093/jb/mvj019.
Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, Pegg AE, Plotnikov AN. Structure and mechanism of spermidine synthases. Biochemistry. 2007;46:8331–9. https://doi.org/10.1021/bi602498k.
Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN. Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J Biol Chem. 2008;283:16135–46. https://doi.org/10.1074/jbc.M710323200.
Tang B, Lee HO, Gupta S, Wang L, Kurimchak AM, Duncan JS, Kruger WD. Extracellular 5’-methylthioadenosine inhibits intracellular symmetric dimethylarginine protein methylation of FUSE-binding proteins. J Biol Chem. 2022;298:102367. https://doi.org/10.1016/j.jbc.2022.102367.
Seiler N. Catabolism of polyamines. Amino Acids. 2004;26:217–33. https://doi.org/10.1007/s00726-004-0070-z.
Wang Y, Casero RA Jr. Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J Biochem. 2006;139:17–25. https://doi.org/10.1093/jb/mvj021.
Wang Y, Hacker A, Murray-Stewart T, Frydman B, Valasinas A, Fraser AV, Woster PM, Casero RA Jr. Properties of recombinant human N1-acetylpolyamine oxidase (hPAO): potential role in determining drug sensitivity. Cancer Chemother Pharmacol. 2005;56:83–90. https://doi.org/10.1007/s00280-004-0936-5.
Wu T, Ling KQ, Sayre LM, McIntire WS. Inhibition of murine N1-acetylated polyamine oxidase by an acetylenic amine and the allenic amine, MDL 72527. Biochem Biophys Res Commun. 2005;326:483–90. https://doi.org/10.1016/j.bbrc.2004.11.054.
Takao K, Shibata S, Ozawa T, Wada M, Sugitia Y, Samejima K, Shirahata A. A conceptual model of the polyamine binding site of N1-acetylpolyamine oxidase developed from a study of polyamine derivatives. Amino Acids. 2009;37:401–5. https://doi.org/10.1007/s00726-008-0168-9.
Henderson Pozzi M, Gawandi V, Fitzpatrick PF. pH dependence of a mammalian polyamine oxidase: insights into substrate specificity and the role of lysine 315. Biochemistry. 2009;48:1508–16. https://doi.org/10.1021/bi802227m.
Pegg AE. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab. 2008;294:E995–1010. https://doi.org/10.1152/ajpendo.90217.2008.
Uemura T, Akasaka Y, Ikegaya H. Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon. 2020;6:e05031. https://doi.org/10.1016/j.heliyon.2020.e05031.
Yoshida M, Tomitori H, Machi Y, Hagihara M, Higashi K, Goda H, Ohya T, Niitsu M, Kashiwagi K, Igarashi K. Acrolein toxicity: Comparison with reactive oxygen species. Biochem Biophys Res Commun. 2009;378:313–8. https://doi.org/10.1016/j.bbrc.2008.11.054.
Igarashi K, Ueda S, Yoshida K, Kashiwagi K. Polyamines in renal failure. Amino Acids. 2006;31:477–83. https://doi.org/10.1007/s00726-006-0264-7.
Masuko T, Takao K, Samejima K, Shirahata A, Igarashi K, Casero RA Jr, Kizawa Y, Sugita Y. N(1)-Nonyl-1,4-diaminobutane ameliorates brain infarction size in photochemically induced thrombosis model mice. Neurosci Lett. 2018;672:118–22. https://doi.org/10.1016/j.neulet.2018.01.054.
Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K. Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke. 2005;36:2609–13. https://doi.org/10.1161/01.STR.0000190004.36793.2d.
Madeo F, Eisenberg T, Pietrocola F, Kroemer G (2018) Spermidine in health and disease. Science. 359. https://doi.org/10.1126/science.aan2788.
Seiler N. Polyamine metabolism. Digestion. 1990;46(Suppl 2):319–30. https://doi.org/10.1159/000200405.
Sarhan S, Knodgen B, Seiler N. The gastrointestinal tract as polyamine source for tumor growth. Anticancer Res. 1989;9:215–23.
Cipolla B, Guillí F, Moulinoux JP. Polyamine-reduced diet in metastatic hormone-refractory prostate cancer (HRPC) patients. Biochem Soc Trans. 2003;31:384–7. https://doi.org/10.1042/bst0310384.
Bardocz S, Brown DS, Grant G, Pusztai A. Luminal and basolateral polyamine uptake by rat small intestine stimulated to grow by Phaseolus vulgaris lectin phytohaemagglutinin in vivo. Biochim Biophys Acta. 1990;103
Comments (0)