New insights into the stemness of adoptively transferred T cells by γc family cytokines

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

Article  PubMed  Google Scholar 

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–89.

MacKay M, Afshinnekoo E, Rub J, Hassan C, Khunte M, Baskaran N, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38(2):233–.

Article  PubMed  CAS  Google Scholar 

Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):1001–.

Article  Google Scholar 

Wang Y, Qiu F, Xu Y, Hou X, Zhang Z, Huang L, et al. Stem cell-like memory T cells: the generation and application. J Leukoc Biol. 2021;110(6):1209–23.

Article  PubMed  CAS  Google Scholar 

van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.

Article  PubMed  PubMed Central  Google Scholar 

Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T Cell States Associated with response to Checkpoint Immunotherapy in Melanoma. Cell. 2018;175(4):998–.

Article  PubMed  PubMed Central  CAS  Google Scholar 

June CH, Sadelain M. Chimeric Antigen receptor therapy. N Engl J Med. 2018;379(1):64–73.

Article  PubMed  PubMed Central  CAS  Google Scholar 

June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.

Article  PubMed  CAS  Google Scholar 

Kalbasi A, Siurala M, Su LL, Tariveranmoshabad M, Picton LK, Ravikumar P, et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature. 2022;607(7918):360–5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021;384(8):705–16.

Article  PubMed  CAS  Google Scholar 

Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigendirected chimeric antigen receptor T-cell therapy in patients with relapsed or refractory Multiple Myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–24.

Article  PubMed  CAS  Google Scholar 

Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.

Article  PubMed  CAS  Google Scholar 

Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21(3):145–61.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic Leukemia. Nat Med. 2018;24(5):563–71.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Finck AV, Blanchard T, Roselle CP, Golinelli G, June CH. Engineered cellular immunotherapies in cancer and beyond. Nat Med. 2022;28(4):678–89.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lugli E, Gattinoni L, Roberto A, Mavilio D, Price DA, Restifo NP, et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc. 2013;8(1):33–42.

Article  PubMed  CAS  Google Scholar 

Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH. Stem cell-like plasticity of naïve and distinct memory CD8 + T cell subsets. Semin Immunol. 2009;21(2):62–8.

Article  PubMed  CAS  Google Scholar 

Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG. Host-reactive CD8 + memory stem cells in graft-versus-host Disease. Nat Med. 2005;11(12):1299–305.

Article  PubMed  CAS  Google Scholar 

Papatriantafyllou M. T cell memory: the stem of T cell memory. Nat Rev Immunol. 2011;11(11):716.

Article  PubMed  CAS  Google Scholar 

Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kondo T, Morita R, Okuzono Y, Nakatsukasa H, Sekiya T, Chikuma S, et al. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat Commun. 2017;8:15338.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kondo T, Imura Y, Chikuma S, Hibino S, Omata-Mise S, Ando M, et al. Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy. Cancer Sci. 2018;109(7):2130–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kondo T, Ando M, Nagai N, Tomisato W, Srirat T, Liu B, et al. The NOTCH-FOXM1 Axis plays a key role in mitochondrial Biogenesis in the induction of human stem cell memory-like CAR-T cells. Cancer Res. 2020;80(3):471–83.

Article  PubMed  CAS  Google Scholar 

Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8 + memory stem cells. Nat Med. 2009;15(7):808–13.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Forget MA, Huon Y, Reuben A, Grange C, Liberman M, Martin J, et al. Stimulation of Wnt/ss-catenin pathway in human CD8 + T lymphocytes from blood and lung tumors leads to a shared young/memory phenotype. PLoS ONE. 2012;7(7):e41074.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yan C, Chang J, Song X, Yan F, Yu W, An Y, et al. Memory stem T cells generated by wnt signaling from blood of human renal clear cell carcinoma patients. Cancer Biol Med. 2019;16(1):109–24.

Article  PubMed  PubMed Central  Google Scholar 

Scholz G, Jandus C, Zhang L, Grandclement C, Lopez-Mejia IC, Soneson C, et al. Modulation of mTOR signalling triggers the formation of stem cell-like memory T cells. EBioMedicine. 2016;4:50–61.

Article  PubMed  PubMed Central  Google Scholar 

Li W, Lu L, Lu J, Wang X, Yang C, Jin J, et al. cGAS-STING-mediated DNA sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy. Sci Transl Med. 2020;12(549):eaay9013.

Gautam S, Fioravanti J, Zhu W, Le Gall JB, Brohawn P, Lacey NE, et al. The transcription factor c-Myb regulates CD8(+) T cell stemness and antitumor immunity. Nat Immunol. 2019;20(3):337–49.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tsui C, Kretschmer L, Rapelius S, Gabriel SS, Chisanga D, Knopper K, et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature. 2022;609(7926):354–60.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheever MA. Twelve immunotherapy Drugs that could cure cancers. Immunol Rev. 2008;222:357–68.

Article  PubMed  CAS  Google Scholar 

Briukhovetska D, Dorr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;21(8):481–99.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12(10):671–84.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and Disease. Nat Med. 2017;23(1):18–27.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Flynn JK, Gorry PR. Stem memory T cells (TSCM)-their role in cancer and HIV immunotherapies. Clin Transl Immunology. 2014;3(7):e20.

Article  PubMed  PubMed Central  Google Scholar 

Thommen DS, Schumacher TN. T cell dysfunction in Cancer. Cancer Cell. 2018;33(4):547–62.

留言 (0)

沒有登入
gif