Targeted elimination of Vancomycin resistance gene vanA by CRISPR-Cas9 system

Bjerketorp J, Levenfors JJ, Nord C, Guss B, Öberg B, Broberg A. Selective isolation of Multidrug-Resistant Pedobacter spp., producers of novel antibacterial peptides. Front Microbiol. 2021;12:642829.

Article  PubMed  PubMed Central  Google Scholar 

Qiao M, Ying GG, Singer AC, Zhu YG. Review of antibiotic resistance in China and its environment. Environ Int. 2018;110:160–72.

Article  CAS  PubMed  Google Scholar 

Algarni S, Ricke SC, Foley SL, Han J. The dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and related enteric Bacteria. Front Microbiol. 2022;13:859854.

Article  PubMed  PubMed Central  Google Scholar 

von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of Antimicrobial Resistance in Microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173.

Google Scholar 

Timmler SB, Kellogg SL, Atkinson SN, Little JL, Djorić D, Kristich CJ. CroR regulates expression of pbp4(5) to promote Cephalosporin Resistance in Enterococcus faecalis. mBio. 2022;13(4):e0111922.

Article  PubMed  Google Scholar 

Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3(5):421–33.

Article  PubMed  PubMed Central  Google Scholar 

Arias CA, Murray BE. The rise of the Enterococcus: beyond Vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calfee DP. Methicillin-resistant Staphylococcus aureus and Vancomycin-resistant enterococci, and other Gram-positives in healthcare. Curr Opin Infect Dis. 2012;25(4):385–94.

Article  CAS  PubMed  Google Scholar 

Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Diseases: Official Publication Infect Dis Soc Am. 2006;42(Suppl 1):25–34.

Article  Google Scholar 

Hu Y, Yang X, Li J, Lv N, Liu F, Wu J, et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol. 2016;82(22):6672–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phukan C, Lahkar M, Ranotkar S, Saikia KK. Emergence of vanA gene among Vancomycin-resistant enterococci in a tertiary care hospital of North - East India. Indian J Med Res. 2016;143(3):357–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Høyland-Kroghsbo NM, Muñoz KA, Bassler BL. Temperature, by Controlling Growth Rate, regulates CRISPR-Cas activity in Pseudomonas aeruginosa. mBio. 2018;9(6).

Gabel C, Li Z, Zhang H, Chang L. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14. Nucleic Acids Res. 2021;49(1):584–94.

Article  CAS  PubMed  Google Scholar 

Gholizadeh P, Köse Ş, Dao S, Ganbarov K, Tanomand A, Dal T, et al. How CRISPR-Cas System could be used to Combat Antimicrobial Resistance. Infect drug Resist. 2020;13:1111–21.

Article  PubMed  PubMed Central  Google Scholar 

Shabbir MAB, Shabbir MZ, Wu Q, Mahmood S, Sajid A, Maan MK, et al. CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob. 2019;18(1):21.

Article  PubMed  PubMed Central  Google Scholar 

Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S. CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathog. 2018;14(6):e1006990.

Article  PubMed  PubMed Central  Google Scholar 

Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, et al. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step Engineering of Bacterial Genome. Sci Rep. 2016;6:37895.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, Volume 1. 2001.

Woroszylo M, Ciecholewska-Jusko D, Junka A, Drozd R, Wardach M, Migdal P et al. Rotating magnetic field increases beta-Lactam Antibiotic susceptibility of Methicillin-resistant Staphylococcus aureus strains. Int J Mol Sci. 2021;22(22).

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

Article  CAS  PubMed  Google Scholar 

Chen L, Chen ZL, Liu JH, Zeng ZL, Ma JY, Jiang HX. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J Antimicrob Chemother. 2007;59(5):880–5.

Article  CAS  PubMed  Google Scholar 

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed MO, Baptiste KE, Vancomycin-Resistant Enterococci. A review of Antimicrobial Resistance mechanisms and perspectives of Human and Animal Health. Microbial drug resistance (Larchmont, NY). 2018;24(5):590–606.

Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, et al. Reversal of mcr-1-Mediated colistin resistance in Escherichia coli by CRISPR-Cas9 System. Infect drug Resist. 2020;13:1171–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He YZ, Kuang X, Long TF, Li G, Ren H, He B, et al. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. J Antimicrob Chemother. 2021;77(1):74–82.

Article  PubMed  Google Scholar 

Álvarez-Narváez S, Giguère S, Berghaus LJ, Dailey C, Vázquez-Boland JA. Horizontal spread of Rhodococcus equi Macrolide Resistance plasmid pRErm46 across Environmental Actinobacteria. Appl Environ Microbiol. 2020;86(9).

Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, et al. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J. 2020;18(3):721–31.

Article  CAS  PubMed  Google Scholar 

Xiong Y, Xie X, Wang Y, Ma W, Liang P, Songyang Z, et al. pgRNAFinder: a web-based tool to design distance Independent paired-gRNA. Bioinf (Oxford England). 2017;33(22):3642–4.

CAS  Google Scholar 

Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD, Enhanced CRISPR. /Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol. 2017;241:136–46.

Article  CAS  PubMed  Google Scholar 

Wilson LOW, O’Brien AR, Bauer DC. The current state and future of CRISPR-Cas9 gRNA Design Tools. Front Pharmacol. 2018;9:749.

Article  PubMed  PubMed Central  Google Scholar 

Zhang JP, Li XL, Neises A, Chen W, Hu LP, Ji GZ, et al. Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci Rep. 2016;6:28566.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA. 2015;112(23):7267–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues M, McBride SW, Hullahalli K, Palmer KL, Duerkop BA. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant Enterococci. Antimicrob Agents Chemother. 2019;63(11).

Hao M, He Y, Zhang H, Liao XP, Liu YH, Sun J et al. CRISPR-Cas9-Mediated carbapenemase gene and plasmid curing in Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2020;64(9).

Kim JS, Cho DH, Park M, Chung WJ, Shin D, Ko KS, et al. CRISPR/Cas9-Mediated re-sensitization of antibiotic-resistant Escherichia coli Harboring extended-spectrum β-Lactamases. J Microbiol Biotechnol. 2016;26(2):394–401.

Article  CAS  PubMed  Google Scholar 

Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep. 2017;7:44929.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu S, Pham T, Neupane S. Delivery methods for CRISPR/Cas9 gene editing in crustaceans. Mar life Sci Technol. 2020;2(1):1–5.

Article  CAS  PubMed  Google Scholar 

Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891.

Article  CAS  PubMed  Google Scholar 

Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, et al. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics. 2021;11(11):5464–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif