Bjerketorp J, Levenfors JJ, Nord C, Guss B, Öberg B, Broberg A. Selective isolation of Multidrug-Resistant Pedobacter spp., producers of novel antibacterial peptides. Front Microbiol. 2021;12:642829.
Article PubMed PubMed Central Google Scholar
Qiao M, Ying GG, Singer AC, Zhu YG. Review of antibiotic resistance in China and its environment. Environ Int. 2018;110:160–72.
Article CAS PubMed Google Scholar
Algarni S, Ricke SC, Foley SL, Han J. The dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and related enteric Bacteria. Front Microbiol. 2022;13:859854.
Article PubMed PubMed Central Google Scholar
von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of Antimicrobial Resistance in Microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173.
Timmler SB, Kellogg SL, Atkinson SN, Little JL, Djorić D, Kristich CJ. CroR regulates expression of pbp4(5) to promote Cephalosporin Resistance in Enterococcus faecalis. mBio. 2022;13(4):e0111922.
Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3(5):421–33.
Article PubMed PubMed Central Google Scholar
Arias CA, Murray BE. The rise of the Enterococcus: beyond Vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–78.
Article CAS PubMed PubMed Central Google Scholar
Calfee DP. Methicillin-resistant Staphylococcus aureus and Vancomycin-resistant enterococci, and other Gram-positives in healthcare. Curr Opin Infect Dis. 2012;25(4):385–94.
Article CAS PubMed Google Scholar
Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Diseases: Official Publication Infect Dis Soc Am. 2006;42(Suppl 1):25–34.
Hu Y, Yang X, Li J, Lv N, Liu F, Wu J, et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol. 2016;82(22):6672–81.
Article CAS PubMed PubMed Central Google Scholar
Phukan C, Lahkar M, Ranotkar S, Saikia KK. Emergence of vanA gene among Vancomycin-resistant enterococci in a tertiary care hospital of North - East India. Indian J Med Res. 2016;143(3):357–61.
Article CAS PubMed PubMed Central Google Scholar
Høyland-Kroghsbo NM, Muñoz KA, Bassler BL. Temperature, by Controlling Growth Rate, regulates CRISPR-Cas activity in Pseudomonas aeruginosa. mBio. 2018;9(6).
Gabel C, Li Z, Zhang H, Chang L. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14. Nucleic Acids Res. 2021;49(1):584–94.
Article CAS PubMed Google Scholar
Gholizadeh P, Köse Ş, Dao S, Ganbarov K, Tanomand A, Dal T, et al. How CRISPR-Cas System could be used to Combat Antimicrobial Resistance. Infect drug Resist. 2020;13:1111–21.
Article PubMed PubMed Central Google Scholar
Shabbir MAB, Shabbir MZ, Wu Q, Mahmood S, Sajid A, Maan MK, et al. CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob. 2019;18(1):21.
Article PubMed PubMed Central Google Scholar
Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S. CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathog. 2018;14(6):e1006990.
Article PubMed PubMed Central Google Scholar
Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, et al. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step Engineering of Bacterial Genome. Sci Rep. 2016;6:37895.
Article CAS PubMed PubMed Central Google Scholar
Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, Volume 1. 2001.
Woroszylo M, Ciecholewska-Jusko D, Junka A, Drozd R, Wardach M, Migdal P et al. Rotating magnetic field increases beta-Lactam Antibiotic susceptibility of Methicillin-resistant Staphylococcus aureus strains. Int J Mol Sci. 2021;22(22).
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article CAS PubMed Google Scholar
Chen L, Chen ZL, Liu JH, Zeng ZL, Ma JY, Jiang HX. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J Antimicrob Chemother. 2007;59(5):880–5.
Article CAS PubMed Google Scholar
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.
Article CAS PubMed PubMed Central Google Scholar
Ahmed MO, Baptiste KE, Vancomycin-Resistant Enterococci. A review of Antimicrobial Resistance mechanisms and perspectives of Human and Animal Health. Microbial drug resistance (Larchmont, NY). 2018;24(5):590–606.
Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, et al. Reversal of mcr-1-Mediated colistin resistance in Escherichia coli by CRISPR-Cas9 System. Infect drug Resist. 2020;13:1171–8.
Article CAS PubMed PubMed Central Google Scholar
He YZ, Kuang X, Long TF, Li G, Ren H, He B, et al. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. J Antimicrob Chemother. 2021;77(1):74–82.
Álvarez-Narváez S, Giguère S, Berghaus LJ, Dailey C, Vázquez-Boland JA. Horizontal spread of Rhodococcus equi Macrolide Resistance plasmid pRErm46 across Environmental Actinobacteria. Appl Environ Microbiol. 2020;86(9).
Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, et al. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J. 2020;18(3):721–31.
Article CAS PubMed Google Scholar
Xiong Y, Xie X, Wang Y, Ma W, Liang P, Songyang Z, et al. pgRNAFinder: a web-based tool to design distance Independent paired-gRNA. Bioinf (Oxford England). 2017;33(22):3642–4.
Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD, Enhanced CRISPR. /Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol. 2017;241:136–46.
Article CAS PubMed Google Scholar
Wilson LOW, O’Brien AR, Bauer DC. The current state and future of CRISPR-Cas9 gRNA Design Tools. Front Pharmacol. 2018;9:749.
Article PubMed PubMed Central Google Scholar
Zhang JP, Li XL, Neises A, Chen W, Hu LP, Ji GZ, et al. Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci Rep. 2016;6:28566.
Article CAS PubMed PubMed Central Google Scholar
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84.
Article CAS PubMed PubMed Central Google Scholar
Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA. 2015;112(23):7267–72.
Article CAS PubMed PubMed Central Google Scholar
Rodrigues M, McBride SW, Hullahalli K, Palmer KL, Duerkop BA. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant Enterococci. Antimicrob Agents Chemother. 2019;63(11).
Hao M, He Y, Zhang H, Liao XP, Liu YH, Sun J et al. CRISPR-Cas9-Mediated carbapenemase gene and plasmid curing in Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2020;64(9).
Kim JS, Cho DH, Park M, Chung WJ, Shin D, Ko KS, et al. CRISPR/Cas9-Mediated re-sensitization of antibiotic-resistant Escherichia coli Harboring extended-spectrum β-Lactamases. J Microbiol Biotechnol. 2016;26(2):394–401.
Article CAS PubMed Google Scholar
Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep. 2017;7:44929.
Article CAS PubMed PubMed Central Google Scholar
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50.
Article CAS PubMed PubMed Central Google Scholar
Xu S, Pham T, Neupane S. Delivery methods for CRISPR/Cas9 gene editing in crustaceans. Mar life Sci Technol. 2020;2(1):1–5.
Article CAS PubMed Google Scholar
Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891.
Article CAS PubMed Google Scholar
Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, et al. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics. 2021;11(11):5464–90.
Comments (0)