Hypoxia-induced circRTN4IP1 promotes progression and glycolysis of hepatocellular carcinoma cells

Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR (2019) Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 7:4. https://doi.org/10.3389/fcell.2019.00004

Article  PubMed  PubMed Central  Google Scholar 

Bach DH, Lee SK, Sood AK (2019) Circular RNAs in cancer. Mol Ther Nucleic Acids 16:118–129. https://doi.org/10.1016/j.omtn.2019.02.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells 10. https://doi.org/10.3390/cells10071715

Bernardi G (2021) The “genomic code”: DNA pervasively moulds chromatin structures leaving no room for “junk”. Life (Basel) 11. https://doi.org/10.3390/life11040342

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

Article  PubMed  Google Scholar 

Chen H, Yang R, Xing L, Wang B, Liu D, Ou X, Deng Y, Jiang R, Chen J (2022) Hypoxia-inducible CircPFKFB4 promotes breast cancer progression by facilitating the CRL4(DDB2) E3 ubiquitin ligase-mediated p27 degradation. Int J Biol Sci 18:3888–3907. https://doi.org/10.7150/ijbs.72842

Article  PubMed  PubMed Central  Google Scholar 

Chen J, Chen J, Huang J, Li Z, Gong Y, Zou B, Liu X, Ding L, Li P, Zhu Z, Zhang B, Guo H, Cai C, Li J (2019) HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging (Albany NY) 11:10839–10860. https://doi.org/10.18632/aging.102488

Article  CAS  PubMed  Google Scholar 

Chen ZQ, Zuo XL, Cai J, Zhang Y, Han GY, Zhang L, Ding WZ, Wu JD, Wang XH (2023) Hypoxia-associated circPRDM4 promotes immune escape via HIF-1α regulation of PD-L1 in hepatocellular carcinoma. Exp Hematol Oncol 12:17. https://doi.org/10.1186/s40164-023-00378-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Q, Han J, Gao S, Zhang S, Pan Y (2020) Hypoxia-induced circular RNA hsa_circ_0008450 accelerates hepatocellular cancer progression via the miR-431/AKAP1 axis. Oncol Lett 20:388. https://doi.org/10.3892/ol.2020.12251

Article  PubMed  PubMed Central  Google Scholar 

Feng D, Xu Y, Hu J, Zhang S, Li M, Xu L (2020) A novel circular RNA, hsa-circ-0000211, promotes lung adenocarcinoma migration and invasion through sponging of hsa-miR-622 and modulating HIF1-α expression. Biochem Biophys Res Commun 521:395–401. https://doi.org/10.1016/j.bbrc.2019.10.134

Article  CAS  PubMed  Google Scholar 

Fu Z, Zhang P, Zhang R, Zhang B, Xiang S, Zhang Y, Luo Z, Huang C (2023) Novel hypoxia-induced HIF1α-circTDRD3-positive feedback loop promotes the growth and metastasis of colorectal cancer. Oncogene 42:238–252. https://doi.org/10.1038/s41388-022-02548-8

Article  CAS  PubMed  Google Scholar 

Gao L, Dou ZC, Ren WH, Li SM, Liang X, Zhi KQ (2019) CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK(½)/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis 10:745. https://doi.org/10.1038/s41419-019-1971-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge SX (2017) Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genom 18:200. https://doi.org/10.1186/s12864-017-3566-0

Article  CAS  Google Scholar 

Hammarlund EU, Flashman E, Mohlin S, Licausi F (2020) Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 370. https://doi.org/10.1126/science.aba3512

Huang C, Yu W, Wang Q, Huang T, Ding Y (2021) CircANTXR1 contributes to the malignant progression of hepatocellular carcinoma by promoting proliferation and metastasis. J Hepatocell Carcinoma 8:1339–1353. https://doi.org/10.2147/jhc.S317256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang D, Li C, Zhang H (2014) Hypoxia and cancer cell metabolism. Acta Biochim Biophys Sin Shanghai 46:214–219. https://doi.org/10.1093/abbs/gmt148

Article  CAS  PubMed  Google Scholar 

Huang Q, Yang J, Goh RMW, You M, Wang L, Ma Z (2022) Hypoxia-induced circRNAs in human diseases: from mechanisms to potential applications. Cells 11. https://doi.org/10.3390/cells11091381

Huang R, Zong X (2017) Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: mechanisms in cancer progression. Crit Rev Oncol Hematol 115:13–22. https://doi.org/10.1016/j.critrevonc.2017.04.005

Article  PubMed  Google Scholar 

Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ (2022) Hypoxia signaling: challenges and opportunities for cancer therapy. Semin Cancer Biol 85:185–195. https://doi.org/10.1016/j.semcancer.2021.10.002

Article  CAS  PubMed  Google Scholar 

Janji B, Chouaib S (2022) The promise of targeting hypoxia to improve cancer immunotherapy: mirage or reality? Front Immunol 13:880810. https://doi.org/10.3389/fimmu.2022.880810

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao B, Liu S, Zhao H, Zhuang Y, Ma S, Lin C, Hu J, Liu X (2022) Hypoxia-responsive circRNAs: a novel but important participant in non-coding RNAs ushered toward tumor hypoxia. Cell Death Dis 13:666. https://doi.org/10.1038/s41419-022-05114-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin Y, Che X, Qu X, Li X, Lu W, Wu J, Wang Y, Hou K, Li C, Zhang X, Zhou J, Liu Y (2020) CircHIPK3 promotes metastasis of gastric cancer via miR-653-5p/miR-338-3p-NRP1 axis under a long-term hypoxic microenvironment. Front Oncol 10:1612. https://doi.org/10.3389/fonc.2020.01612

Article  PubMed  PubMed Central  Google Scholar 

Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18:157. https://doi.org/10.1186/s12943-019-1089-9

Article  PubMed  PubMed Central  Google Scholar 

Lai Q, Li W, Wang H, Xu S, Deng Z (2022) Emerging role of circRNAs in cancer under hypoxia. Oncol Lett 24:372. https://doi.org/10.3892/ol.2022.13492

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau KW, Tian YM, Raval RR, Ratcliffe PJ, Pugh CW (2007) Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br J Cancer 96:1284–1292. https://doi.org/10.1038/sj.bjc.6603675

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, Wang X (2021) HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 6:76. https://doi.org/10.1038/s41392-020-00453-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, Pan X, Zhu D, Deng Z, Jiang R, Wang X (2019) Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology 70:1298–1316. https://doi.org/10.1002/hep.30671

Article  CAS  PubMed  Google Scholar 

Maldonado V, Melendez-Zajgla J (2022) The role of hypoxia-associated long non-coding RNAs in breast cancer. Cells 11. https://doi.org/10.3390/cells11101679

Ojha R, Nandani R, Chatterjee N, Prajapati VK (2018) Emerging role of circular RNAs as potential biomarkers for the diagnosis of human diseases. Adv Exp Med Biol 1087:141–157. https://doi.org/10.1007/978-981-13-1426-1_12

Article  CAS  PubMed  Google Scholar 

Ouyang X, Yao L, Liu G, Liu S, Gong L, Xiao Y (2021) Loss of androgen receptor promotes HCC invasion and metastasis via activating circ-LNPEP/miR-532-3p/RAB9A signal under hypoxia. Biochem Biophys Res Commun 557:26–32. https://doi.org/10.1016/j.bbrc.2021.02.120

Article  CAS  PubMed  Google Scholar 

Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180. https://doi.org/10.1126/science.aaf4405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–e217. https://doi.org/10.1182/blood-2010-10-314427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schödel J, Ratcliffe PJ (2019) Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 15:641–659. https://doi.org/10.1038/s41581-019-0182-z

Article  PubMed  Google Scholar 

Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354. https://doi.org/10.1038/nrm1366

Article  CAS  PubMed  Google Scholar 

Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56. https://doi.org/10.1016/j.gde.2009.10.009

Article  CAS  PubMed  Google Scholar 

Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671. https://doi.org/10.1172/jci67230

Article  CAS 

留言 (0)

沒有登入
gif