Knockdown of ADAMDEC1 ameliorates ox-LDL-induced endothelial cell injury and atherosclerosis progression

Alfandari D, Taneyhill LA (2018) Cut loose and run: the complex role of ADAM proteases during neural crest cell development. Genesis (New York, NY: 2000) 56:e23095. https://doi.org/10.1002/dvg.23095

Article  Google Scholar 

Chen L, Zhou Z, Hu C et al (2022) Platelet membrane-coated nanocarriers targeting plaques to deliver anti-CD47 antibody for atherosclerotic therapy. Research (Washington, DC) 2022:9845459. https://doi.org/10.34133/2022/9845459

Article  CAS  Google Scholar 

Chen R, Jin G, McIntyre TM (2017) The soluble protease ADAMDEC1 released from activated platelets hydrolyzes platelet membrane pro-epidermal growth factor (EGF) to active high-molecular-weight EGF. J Biol Chem 292:10112–10122. https://doi.org/10.1074/jbc.M116.771642

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Xie X, Jiang N et al (2021) CCR5 signaling promotes lipopolysaccharide-induced macrophage recruitment and alveolar developmental arrest. Cell Death Dis 12:184. https://doi.org/10.1038/s41419-021-03464-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Couchie D, Vaisman B, Abderrazak A et al (2017) Human plasma thioredoxin-80 increases with age and in ApoE(-/-) mice induces inflammation, angiogenesis, and atherosclerosis. Circulation 136:464–475. https://doi.org/10.1161/circulationaha.117.027612

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crouser ED, Culver DA, Knox KS et al (2009) Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 179:929–938. https://doi.org/10.1164/rccm.200803-490OC

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng X, Zhang X, Tang B et al (2018) Design, synthesis, and evaluation of dihydrobenzo[cd]indole-6-sulfonamide as TNF-α inhibitors. Front Chem 6:98. https://doi.org/10.3389/fchem.2018.00098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gareus R, Kotsaki E, Xanthoulea S et al (2008) Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 8:372–383. https://doi.org/10.1016/j.cmet.2008.08.016

Article  CAS  PubMed  Google Scholar 

Geng YJ (2001) Biologic effect and molecular regulation of vascular apoptosis in atherosclerosis. Curr Atheroscler Rep 3:234–242. https://doi.org/10.1007/s11883-001-0066-z

Article  CAS  PubMed  Google Scholar 

Ha SE, Jorgensen BG, Wei L et al (2022) Metalloendopeptidase ADAM-like decysin 1 (ADAMDEC1) in colonic subepithelial PDGFRα(+) cells is a new marker for inflammatory bowel disease. Int J Mol Sci 23. https://doi.org/10.3390/ijms23095007

Hendricks WPD, Briones N, Halperin RF et al (2019) PD-1-associated gene expression signature of neoadjuvant trastuzumab-treated tumors correlates with patient survival in HER2-positive breast cancer. Cancers 11. https://doi.org/10.3390/cancers11101566

Ji N, Wang Y, Gong X et al (2021) CircMTO1 inhibits ox-LDL-stimulated vascular smooth muscle cell proliferation and migration via regulating the miR-182-5p/RASA1 axis. Mol Med (Cambridge, Mass) 27:73. https://doi.org/10.1186/s10020-021-00330-2

Article  CAS  Google Scholar 

Jimenez-Pascual A, Hale JS, Kordowski A et al (2019) ADAMDEC1 maintains a growth factor signaling loop in cancer stem cells. Cancer Discov 9:1574–1589. https://doi.org/10.1158/2159-8290.cd-18-1308

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuniyoshi N, Imai H, Kiso Y et al (2021) Biological potentials for a family of disintegrin and metalloproteinase (ADAMDEC)-1 in mouse normal pregnancy. J Vet Med Sci 83:512–521. https://doi.org/10.1292/jvms.20-0570

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Gonzalez KM, Chung J et al (2022) Surface-modified nanotherapeutics targeting atherosclerosis. Biomater Sci 10:5459–5471. https://doi.org/10.1039/d2bm00660j

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu D, Wang X, Zhang M et al (2020) WISP1 alleviates lipid deposition in macrophages via the PPARγ/CD36 pathway in the plaque formation of atherosclerosis. J Cell Mol Med 24:11729–11741. https://doi.org/10.1111/jcmm.15783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lund J, Troeberg L, Kjeldal H et al (2015) Evidence for restricted reactivity of ADAMDEC1 with protein substrates and endogenous inhibitors. J Biol Chem 290:6620–6629. https://doi.org/10.1074/jbc.M114.601724

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679. https://doi.org/10.1016/j.cell.2007.05.003

Article  CAS  PubMed  Google Scholar 

Nakashima Y, Plump AS, Raines EW et al (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140. https://doi.org/10.1161/01.atv.14.1.133

Article  CAS  PubMed  Google Scholar 

Nasiri-Ansari Ν, Dimitriadis GK, Agrogiannis G et al (2018) Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol 17:106. https://doi.org/10.1186/s12933-018-0749-1

Article  CAS  PubMed  Google Scholar 

Oh BY, Cho J, Hong HK et al (2017) Exome and transcriptome sequencing identifies loss of PDLIM2 in metastatic colorectal cancers. Cancer Manag Res 9:581–589. https://doi.org/10.2147/cmar.s149002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papaspyridonos M, Smith A, Burnand KG et al (2006) Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 26:1837–1844. https://doi.org/10.1161/01.atv.0000229695.68416.76

Article  CAS  PubMed  Google Scholar 

Patel AP, Natarajan P (2019) Completing the genetic spectrum influencing coronary artery disease: from germline to somatic variation. Cardiovasc Res 115:830–843. https://doi.org/10.1093/cvr/cvz032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pateras I, Giaginis C, Tsigris C et al (2014) NF-κB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links. Expert Opin Ther Targets 18:1089–1101. https://doi.org/10.1517/14728222.2014.938051

Article  CAS  PubMed  Google Scholar 

Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. https://doi.org/10.1152/physrev.00024.2005

Article  CAS  PubMed  Google Scholar 

Tombor LS, John D, Glaser SF et al (2021) Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun 12:681. https://doi.org/10.1038/s41467-021-20905-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue X, Li F, Xu M et al (2023) Gastrodin ameliorates atherosclerosis by inhibiting foam cells formation and inflammation through down-regulating NF-κB pathway. Nutr Metab 20:9. https://doi.org/10.1186/s12986-022-00722-z

Article  CAS  Google Scholar 

Yako Y, Hayashi T, Takeuchi Y et al (2018) ADAM-like decysin-1 (ADAMDEC1) is a positive regulator of epithelial defense against cancer (EDAC) that promotes apical extrusion of RasV12-transformed cells. Sci Rep 8:9639. https://doi.org/10.1038/s41598-018-27469-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang CY, Chanalaris A, Troeberg L (2017) ADAMTS and ADAM metalloproteinases in osteoarthritis - looking beyond the ‘usual suspects’. Osteoarthr Cartil 25:1000–1009. https://doi.org/10.1016/j.joca.2017.02.791

Article  CAS  Google Scholar 

Zadelaar S, Kleemann R, Verschuren L et al (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721. https://doi.org/10.1161/atvbaha.107.142570

Article  CAS  PubMed  Google Scholar 

Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86:192–201. https://doi.org/10.1093/cvr/cvp391

Article  CAS  PubMed  Google Scholar 

Zhao J, Wang J, Liu J et al (2022) Effect and mechanisms of kaempferol against endometriosis based on network pharmacology and in vitro experiments. BMC Complementary Med Ther 22:254. https://doi.org/10.1186/s12906-022-03729-4

Article  CAS  Google Scholar 

Zhou H, Jiang F, Leng Y (2021) Propofol ameliorates ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/Akt/m-TOR pathway: a novel therapeutic strategy in atherosclerosis. Front Mol Biosci 8:695336. https://doi.org/10.3389/fmolb.2021.695336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu W, Shi L, Gong Y et al (2022) Upregulation of ADAMDEC1 correlates with tumor progression and predicts poor prognosis in non-small cell lung cancer (NSCLC) via the PI3K/AKT pathway. Thoracic cancer 13:1027–1039. https://doi.org/10.1111/1759-7714.14354

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif