Identification of flowering genes in Camellia perpetua by comparative transcriptome analysis

Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104:6484–6489. https://doi.org/10.1073/pnas.0610717104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai S, Tuan PA, Saito T, Ito A, Ubi BE, Ban Y, Moriguchi T, Wilson Z (2017) Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors. J Exp Bot 68:4899–4914. https://doi.org/10.1093/jxb/erx296

Bai M, Liu J, Fan C, Chen Y, Chen H, Lu J, Sun J, Ning G, Wang C (2021) KSN heterozygosity is associated with continuous flowering of Rosa rugosa Purple branch. Hortic Res 8:26. https://doi.org/10.1038/s41438-021-00464-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800. https://doi.org/10.1105/tpc.10.5.791

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouché F, Lobet G, Tocquin P, Périlleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44:1167–1171. https://doi.org/10.1093/nar/gkv1054

Article  CAS  Google Scholar 

Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver POB, Meurisse N, Oxbrough A, Taki H, Thompson ID, Fvd P, Jactel H (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26:3005–3035

Article  Google Scholar 

Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol 142:509–525. https://doi.org/10.1104/pp.106.082289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chae E, Tan QK, Hill TA, Irish VF (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235–1245. https://doi.org/10.1242/dev.015842

Article  CAS  PubMed  Google Scholar 

Chen M, Penfield S (2018) Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014–1017. https://doi.org/10.1126/science.aar7361

Article  CAS  PubMed  Google Scholar 

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

Article  CAS  PubMed  Google Scholar 

Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37. https://doi.org/10.1038/353031a0

Article  CAS  PubMed  Google Scholar 

Cui J, Yu J, Zhang Y, Deng S, Xu Z-F, Wang Y (2022) Cloning and expression analysis of floral transition genes FT and CEN1 and their promoters in three species of Sect. Chrysanthae. IOP Publishing Mol Plant Breed. https://kns.cnki.net/kcms/detail/46.1068.S.20220129.1409.006.html. Accessed 29 Jan 2022

Fan M, Li X, Zhang Y, Wu S, Song Z, Yin H, Liu W, Fan Z, Li J (2022) Floral organ transcriptome in Camellia sasanqua provided insight into stamen petaloid. BMC Plant Biol 22:474. https://doi.org/10.1186/s12870-022-03860-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan Z, Li J, Li X, Wu B, Wang J, Liu Z, Yin H (2015) Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea. Sci Rep 5:9729. https://doi.org/10.1038/srep09729

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fornara F, Parenicová L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219. https://doi.org/10.1104/pp.104.045039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y (2014) DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell 26:2920–2938. https://doi.org/10.1105/tpc.114.125690

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao G, Kan J, Jiang C, Ahmar S, Zhang J, Yang P (2021) Genome-wide diversity analysis of TCP transcription factors revealed cases of selection from wild to cultivated barley. Funct Integr Genomics 21:31–42. https://doi.org/10.1007/s10142-020-00759-4

Article  CAS  PubMed  Google Scholar 

Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76:131–143. https://doi.org/10.1016/0092-8674(94)90178-3

Article  CAS  PubMed  Google Scholar 

Hu J, Chen Q, Idrees A, Bi W, Lai Z, Sun Y (2023) Structural and functional analysis of the MADS-Box genes reveals their functions in cold stress responses and flower development in tea plant (Camellia sinensis). Plants 12:2929. https://doi.org/10.3390/plants12162929

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang L, Liang S, Ye C (2014) A new species of Camellia from Guangxi, China. Guangdong Yuanlin 36:69–70

CAS  Google Scholar 

Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LH, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125. https://doi.org/10.1111/j.1365-313X.2011.04776.x

Article  CAS  PubMed  Google Scholar 

Jiao Y, Xie R, Zhang H (2021) Identification of potential pathways associated with indole-3-butyric acid in citrus bud germination via transcriptomic analysis. Funct Integr Genomics 21:619–631. https://doi.org/10.1007/s10142-021-00802-y

Article  CAS  PubMed  Google Scholar 

Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965. https://doi.org/10.1126/science.286.5446.1962

Article  CAS  PubMed  Google Scholar 

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

Article  CAS  PubMed  PubMed Central  Google Scholar 

La Y, Xiao L, Huang H, Zhang J, Sun M, Wang Y (2021) Process of flowering bud differentiation and comparison of morphological characteristics of three species in yellow Camellia. Southwest China J Agric Sci 34:977–983. https://doi.org/10.16213/j.cnki.scjas.2021.5.011

Article  Google Scholar 

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402. https://doi.org/10.1101/gad.1518407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. https://doi.org/10.1186/1471-2105-12-323

Article  CAS  Google Scholar 

Li J, Pan B, Niu L, Chen M-S, Tang M, Xu Z-F (2018b) Gibberellin inhibits floral initiation in the perennial woody plant Jatropha curcas. J Plant Growth Regul 37:999–1006. https://doi.org/10.1007/s00344-018-9797-8

Article  CAS  Google Scholar 

Li X, Fan Z, Guo H, Ye N, Lyu T, Yang W, Wang J, Wang JT, Wu B, Li J, Yin H (2018a) Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia. Funct Integr Genomics 18:659–671. https://doi.org/10.1007/s10142-018-0617-9

Article  CAS  PubMed  Google Scholar 

Liang S, Huang L (2010) New specie of yellow camellia — Camellia perpetua. Guangxi Linye 6:33

Google Scholar 

Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491. https://doi.org/10.1242/dev.020255

Article  CAS  PubMed  Google Scholar 

Liu K, Liang Y, He H, Wang W, Huang C, Zong S, Wang L, Xiao J, Du H (2018) Long-term impacts of China’s new commercial harvest exclusion policy on ecosystem services and biodiversity in the temperate forests of northeast China. Sustainability 10:1071

Article  CAS  Google Scholar 

Liu Y, Hao X, Lu Q, Zhang W, Zhang H, Wang L, Yang Y, Xiao B, Wang X (2020) Genome-wide identification and expression analysis of flowering-related genes reveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis). Genomics 112:2318–2326. https://doi.org/10.1016/j.ygeno.2020.01.003

Article  CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Livne S, Lor VS, Nir I, Eliaz N, Aharoni A, Olszewski NE, Eshed Y, Weiss D (2015) Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants. Plant Cell 27:1579–1594. http

留言 (0)

沒有登入
gif