CFAP61 knockdown aggravates male infertility by inhibiting testosterone secretion by Leydig cells via the MAPK/COX-2 pathway

Adegoke EO, Rahman MS, Pang MG (2020) Bisphenols threaten male reproductive health via testicular cells. Front Endocrinol (Lausanne) 11:624. https://doi.org/10.3389/fendo.2020.00624

Article  PubMed  Google Scholar 

Agarwal A, Baskaran S, Parekh N et al (2021) Male infertility. Lancet 397:319–333. https://doi.org/10.1016/s0140-6736(20)32667-2

Article  PubMed  Google Scholar 

Cacheiro-Llaguno C, Hernández-Subirá E, Díaz-Muñoz MD, Fresno M, Serrador JM, Íñiguez MA (2022) Regulation of cyclooxygenase-2 expression in human T cells by glucocorticoid receptor-mediated transrepression of nuclear factor of activated T cells. Int J Mol Sci 23. https://doi.org/10.3390/ijms232113275

Chen Y, Wang J, Xu D et al (2021) m(6)A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy 17:457–475. https://doi.org/10.1080/15548627.2020.1720431

Article  PubMed  CAS  Google Scholar 

Chung JY, Park JE, Kim YJ, Lee SJ, Yu WJ, Kim JM (2022) Styrene cytotoxicity in testicular Leydig cells in vitro. Dev Reprod 26:99–105. https://doi.org/10.12717/dr.2022.26.3.99

Article  PubMed  PubMed Central  Google Scholar 

Dudek P, Kozakowski J, Zgliczyński W (2017) Late-onset hypogonadism. Prz Menopauzalny 16:66–69. https://doi.org/10.5114/pm.2017.68595

Article  PubMed  PubMed Central  Google Scholar 

Dymek EE, Smith EF (2007) A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity. J Cell Biol 179:515–526. https://doi.org/10.1083/jcb.200703107

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fagerberg L, Hallström BM, Oksvold P et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406. https://doi.org/10.1074/mcp.M113.035600

Article  PubMed  CAS  Google Scholar 

Frejborg E, Salo T, Salem A (2020) Role of Cyclooxygenase-2 in head and neck tumorigenesis. Int J Mol Sci 21. https://doi.org/10.3390/ijms21239246

Frungieri MB, Calandra RS, Mayerhofer A, Matzkin ME (2015) Cyclooxygenase and prostaglandins in somatic cell populations of the testis. Reproduction 149:R169-180. https://doi.org/10.1530/rep-14-0392

Article  PubMed  CAS  Google Scholar 

Fujisawa M (2006) Regulation of testicular function by cell-to-cell interaction. Reprod Med Biol 5:9–17. https://doi.org/10.1111/j.1447-0578.2006.00118.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Grover SB, Antil N, Katyan A, Rajani H, Grover H, Mittal P, Prasad S (2020) Niche role of MRI in the evaluation of female infertility. Indian J Radiol Imaging 30:32–45. https://doi.org/10.4103/ijri.IJRI_377_19

Article  PubMed  PubMed Central  Google Scholar 

Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K (2019) Cyclooxygenase-2 in cancer: A review. J Cell Physiol 234:5683–5699. https://doi.org/10.1002/jcp.27411

Article  PubMed  CAS  Google Scholar 

Hu T, Meng L, Tan C et al (2023) Biallelic CFAP61 variants cause male infertility in humans and mice with severe oligoasthenoteratozoospermia. J Med Genet 60:144–153. https://doi.org/10.1136/jmedgenet-2021-108249

Article  PubMed  CAS  Google Scholar 

Huang T, Yin Y, Liu C et al (2020) Absence of murine CFAP61 causes male infertility due to multiple morphological abnormalities of the flagella. Sci Bull (Beijing) 65:854–864. https://doi.org/10.1016/j.scib.2020.01.023

Article  PubMed  CAS  Google Scholar 

Jing J, Ding N, Wang D et al (2020) Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis 11:626. https://doi.org/10.1038/s41419-020-02751-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li C, Zhang L, Ma T et al (2021) Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling. Chemosphere 263:128020. https://doi.org/10.1016/j.chemosphere.2020.128020

Article  PubMed  CAS  Google Scholar 

Liu S, Zhang J, Kherraf ZE et al. (2021) CFAP61 is required for sperm flagellum formation and male fertility in human and mouse. Development 148. https://doi.org/10.1242/dev.199805

Luo D, He Z, Yu C, Guan Q (2022) Role of p38 MAPK signalling in testis development and male fertility. Oxid Med Cell Longev 2022:6891897. https://doi.org/10.1155/2022/6891897

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma A, Zeb A, Ali I et al (2021) Biallelic variants in CFAP61 cause multiple morphological abnormalities of the flagella and male infertility. Front Cell Dev Biol 9:803818. https://doi.org/10.3389/fcell.2021.803818

Article  PubMed  Google Scholar 

Monakova A, Sagaradze G, Basalova N, Popov V, Balabanyan V, Efimenko A (2022) Novel potency assay for MSC secretome-based treatment of idiopathic male infertility employed Leydig cells and revealed vascular endothelial growth factor as a promising potency marker. Int J Mol Sci 23. https://doi.org/10.3390/ijms23169414

Nordkap L, Jensen TK, Hansen Å M et al. (2016) Psychological stress and testicular function: a cross-sectional study of 1,215 Danish men. Fertil Steril 105:174–187.e171–172. https://doi.org/10.1016/j.fertnstert.2015.09.016

Oduwole OO, Huhtaniemi IT, Misrahi M (2021) The roles of luteinizing hormone, follicle-stimulating hormone and testosterone in spermatogenesis and folliculogenesis revisited. Int J Mol Sci 22. https://doi.org/10.3390/ijms222312735

Omolaoye TS, Omolaoye VA, Kandasamy RK, Hachim MY, Du Plessis SS (2022) Omics and male infertility: Highlighting the application of transcriptomic data. Life (Basel) 12. https://doi.org/10.3390/life12020280

Parmar BK, Verma UR, Vaishnav JA, Balakrishnan S (2022) Cyclooxygenase-2 plays a crucial role during myocardial patterning of developing chick. Int J Dev Biol 66:373–381. https://doi.org/10.1387/ijdb.220153sb

Article  PubMed  CAS  Google Scholar 

Sağraç D, Şenkal S, Hayal TB, Demirci S, Şişli HB, Asutay AB, Doğan A (2022) Protective role of cytoglobin and neuroglobin against the Lipopolysaccharide (LPS)-induced inflammation in Leydig cells ex vivo. Reprod Biol 22:100595. https://doi.org/10.1016/j.repbio.2021.100595

Article  PubMed  CAS  Google Scholar 

Sharma A, Minhas S, Dhillo WS, Jayasena CN (2021) Male infertility due to testicular disorders. J Clin Endocrinol Metab 106:e442–e459. https://doi.org/10.1210/clinem/dgaa781

Article  PubMed  Google Scholar 

Sun J, Lian X, Lv C et al (2023) Trps1 acts as a regulator of Sf-1 transcription and testosterone synthesis in mouse Leydig cells. Cell Biol Toxicol 8:2. https://doi.org/10.1007/s10565-023-09823-8

Article  CAS  Google Scholar 

The Genotype-Tissue Expression (GTEx) project. (2013) Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653

Tian WJ, Jeon SH, Cho HJ, Rajasekaran MR et al (2022) Effect of Li-ESWT on Testicular Tissue and Function in Androgen-Deficient Rat Model. Oxid Med Cell Longev 2022:5213573. https://doi.org/10.1155/2022/5213573

Article  PubMed  PubMed Central  CAS  Google Scholar 

Urbanska P, Song K, Joachimiak E et al (2015) The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. Mol Biol Cell 26:1463–1475. https://doi.org/10.1091/mbc.E14-11-1545

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang X, Shen CL, Dyson MT, Eimerl S, Orly J, Hutson JC, Stocco DM (2005) Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology 146:4202–4208. https://doi.org/10.1210/en.2005-0298

Article  PubMed  CAS  Google Scholar 

Wang Z, Xie Y, Chen H et al (2021) Guilingji protects against spermatogenesis dysfunction from oxidative stress via regulation of MAPK and apoptotic signaling pathways in Immp2l mutant mice. Front Pharmacol 12:771161. https://doi.org/10.3389/fphar.2021.771161

Article  PubMed  CAS  Google Scholar 

Wu X, Zhou L, Shi J, Cheng CY, Sun F (2022) Multiomics analysis of male infertility†. Biol Reprod 107:118–134. https://doi.org/10.1093/biolre/ioac109

Article  PubMed  Google Scholar 

Xiong X, Wu Q, Zhang L et al (2022) Chronic stress inhibits testosterone synthesis in Leydig cells through mitochondrial damage via Atp5a1. J Cell Mol Med 26:354–363. https://doi.org/10.1111/jcmm.17085

Article  PubMed  CAS  Google Scholar 

Yang C, Li P, Li Z (2021a) Clinical application of aromatase inhibitors to treat male infertility. Hum Reprod Update 28:30–50. https://doi.org/10.1093/humupd/dmab036

Article  PubMed  CAS  Google Scholar 

Yang M, Guan S, Tao J et al (2021b) Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells†. Biol Reprod 104:1322–1336. https://doi.org/10.1093/biolre/ioab046

Article  PubMed  Google Scholar 

Zhao Y, Liu X, Qu Y et al (2021) The roles of p38 MAPK → COX2 and NF-κB → COX2 signal pathways in age-related testosterone reduction. Sci Rep 9:10556. https://doi.org/10.1038/s41598-019-46794-5

Article  CAS  Google Scholar 

Zhou SH, Deng YF, Weng ZW, Weng HW, Liu ZD (2019) Traditional Chinese medicine as a remedy for male infertility: A review. World J Mens Health 37:175–185. https://doi.org/10.5534/wjmh.180069

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif