Divergence and conservation of the meiotic recombination machinery

de Massy, B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu. Rev. Genet. 47, 563–599 (2013).

Article  PubMed  Google Scholar 

Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).

Article  CAS  PubMed  Google Scholar 

Hunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).

Article  PubMed Central  PubMed  Google Scholar 

Hassold, T. J. & Hunt, P. A. Missed connections: recombination and human aneuploidy. Prenat. Diagn. 41, 584–590 (2021).

Article  PubMed  Google Scholar 

Boekhout, M. et al. REC114 partner ANKRD31 controls number, timing, and location of meiotic DNA breaks. Mol. Cell 74, 1053–1068.e1058 (2019).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Dapper, A. L. & Payseur, B. A. Molecular evolution of the meiotic recombination pathway in mammals. Evolution 73, 2368–2389 (2019). This study uses molecular evolution analyses to systematically characterize components of the mammalian recombination machinery and finds evidence for rapid evolution in key components.

Article  PubMed Central  PubMed  Google Scholar 

Keeney, S. Spo11 and the formation of DNA double-strand breaks in meiosis. Genome Dyn. Stab. 2, 81–123 (2008).

Article  PubMed Central  PubMed  Google Scholar 

Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023). Using single-nucleus transcriptomics across different mammalian species, this study characterizes changes in spermatogenesis at unprecedented resolution.

Article  CAS  PubMed  Google Scholar 

Malik, S. B., Ramesh, M. A., Hulstrand, A. M. & Logsdon, J. M. Jr. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol. Biol. Evol. 24, 2827–2841 (2007). Using degenerate PCR and database searches this study identifies homologues of SPO11 and TOP6BL in protists.

Article  CAS  PubMed  Google Scholar 

Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

Article  CAS  PubMed  Google Scholar 

Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417 (1997).

Article  CAS  PubMed  Google Scholar 

Robert, T. et al. The TOPOVIB-like protein family is required for meiotic DNA double-strand break formation. Science 351, 943–949 (2016). This study identified the SPO11 partner TOPOVIBL in mouse.

Article  CAS  PubMed  Google Scholar 

Vrielynck, N. et al. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939–943 (2016). This study identified the SPO11 partner TOPOVIBL in Arabidopsis.

Article  CAS  PubMed  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Fraune, J., Wiesner, M. & Benavente, R. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms. J. Genet. Genomics 41, 107–115 (2014).

Article  PubMed  Google Scholar 

Loidl, J. Conservation and variability of meiosis across the eukaryotes. Annu. Rev. Genet. 50, 293–316 (2016).

Article  CAS  PubMed  Google Scholar 

Ishiguro, K. I. The cohesin complex in mammalian meiosis. Genes Cells 24, 6–30 (2019).

Article  CAS  PubMed  Google Scholar 

Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).

Article  PubMed Central  PubMed  Google Scholar 

Longhese, M. P., Bonetti, D., Guerini, I., Manfrini, N. & Clerici, M. DNA double-strand breaks in meiosis: checking their formation, processing and repair. DNA Repair 8, 1127–1138 (2009).

Article  CAS  PubMed  Google Scholar 

Gerton, J. L. & Hawley, R. S. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477–487 (2005).

Article  CAS  PubMed  Google Scholar 

de Boer, E. & Heyting, C. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115, 220–234 (2006).

Article  PubMed  Google Scholar 

Subramanian, V. V. & Hochwagen, A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 6, a016675 (2014).

Article  PubMed Central  PubMed  Google Scholar 

Ivanov, E. L., Korolev, V. G. & Fabre, F. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132, 651–664 (1992).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Engebrecht, J., Hirsch, J. & Roeder, G. S. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell 62, 927–937 (1990).

Article  CAS  PubMed  Google Scholar 

Malone, R. E. et al. Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 128, 79–88 (1991).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Menees, T. M. & Roeder, G. S. MEI4, a yeast gene required for meiotic recombination. Genetics 123, 675–682 (1989).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gardiner, J. M., Bullard, S. A., Chrome, C. & Malone, R. E. Molecular and genetic analysis of REC103, an early meiotic recombination gene in yeast. Genetics 146, 1265–1274 (1997).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bhargava, J., Engebrecht, J. & Roeder, G. S. The rec102 mutant of yeast is defective in meiotic recombination and chromosome synapsis. Genetics 130, 59–69 (1992).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Galbraith, A. M. & Malone, R. E. Characterization of REC104, a gene required for early meiotic recombination in the yeast Saccharomyces cerevisiae. Dev. Genet. 13, 392–402 (1992).

Article  CAS  PubMed  Google Scholar 

Johzuka, K. & Ogawa, H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139, 1521–1532 (1995).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Game, J. C., Zamb, T. J., Braun, R. J., Resnick, M. & Roth, R. M. The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94, 51–68 (1980).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Jiao, K., Salem, L. & Malone, R. Support for a meiotic recombination initiation complex: interactions among Rec102p, Rec104p, and Spo11p. Mol. Cell Biol. 23, 5928–5938 (2003).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kee, K. & Keeney, S. Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae. Genetics 160, 111–122 (2002).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kee, K., Protacio, R. U., Arora, C. & Keeney, S. Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J. 23, 1815–1824 (2004).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Claeys Bouuaert, C. et al. Structural and functional characterization of the Spo11 core complex. Nat. Struct. Mol. Biol. 28, 92–102 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Arora, C., Kee, K., Maleki, S. & Keeney, S. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol. Cell 13, 549–559 (2004).

Article  CAS  PubMed 

Comments (0)

No login
gif