de Massy, B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu. Rev. Genet. 47, 563–599 (2013).
Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).
Article CAS PubMed Google Scholar
Hunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).
Article PubMed Central PubMed Google Scholar
Hassold, T. J. & Hunt, P. A. Missed connections: recombination and human aneuploidy. Prenat. Diagn. 41, 584–590 (2021).
Boekhout, M. et al. REC114 partner ANKRD31 controls number, timing, and location of meiotic DNA breaks. Mol. Cell 74, 1053–1068.e1058 (2019).
Article CAS PubMed Central PubMed Google Scholar
Dapper, A. L. & Payseur, B. A. Molecular evolution of the meiotic recombination pathway in mammals. Evolution 73, 2368–2389 (2019). This study uses molecular evolution analyses to systematically characterize components of the mammalian recombination machinery and finds evidence for rapid evolution in key components.
Article PubMed Central PubMed Google Scholar
Keeney, S. Spo11 and the formation of DNA double-strand breaks in meiosis. Genome Dyn. Stab. 2, 81–123 (2008).
Article PubMed Central PubMed Google Scholar
Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023). Using single-nucleus transcriptomics across different mammalian species, this study characterizes changes in spermatogenesis at unprecedented resolution.
Article CAS PubMed Google Scholar
Malik, S. B., Ramesh, M. A., Hulstrand, A. M. & Logsdon, J. M. Jr. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol. Biol. Evol. 24, 2827–2841 (2007). Using degenerate PCR and database searches this study identifies homologues of SPO11 and TOP6BL in protists.
Article CAS PubMed Google Scholar
Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).
Article CAS PubMed Google Scholar
Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417 (1997).
Article CAS PubMed Google Scholar
Robert, T. et al. The TOPOVIB-like protein family is required for meiotic DNA double-strand break formation. Science 351, 943–949 (2016). This study identified the SPO11 partner TOPOVIBL in mouse.
Article CAS PubMed Google Scholar
Vrielynck, N. et al. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939–943 (2016). This study identified the SPO11 partner TOPOVIBL in Arabidopsis.
Article CAS PubMed Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Article CAS PubMed Central PubMed Google Scholar
Fraune, J., Wiesner, M. & Benavente, R. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms. J. Genet. Genomics 41, 107–115 (2014).
Loidl, J. Conservation and variability of meiosis across the eukaryotes. Annu. Rev. Genet. 50, 293–316 (2016).
Article CAS PubMed Google Scholar
Ishiguro, K. I. The cohesin complex in mammalian meiosis. Genes Cells 24, 6–30 (2019).
Article CAS PubMed Google Scholar
Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).
Article PubMed Central PubMed Google Scholar
Longhese, M. P., Bonetti, D., Guerini, I., Manfrini, N. & Clerici, M. DNA double-strand breaks in meiosis: checking their formation, processing and repair. DNA Repair 8, 1127–1138 (2009).
Article CAS PubMed Google Scholar
Gerton, J. L. & Hawley, R. S. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477–487 (2005).
Article CAS PubMed Google Scholar
de Boer, E. & Heyting, C. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115, 220–234 (2006).
Subramanian, V. V. & Hochwagen, A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 6, a016675 (2014).
Article PubMed Central PubMed Google Scholar
Ivanov, E. L., Korolev, V. G. & Fabre, F. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132, 651–664 (1992).
Article CAS PubMed Central PubMed Google Scholar
Engebrecht, J., Hirsch, J. & Roeder, G. S. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell 62, 927–937 (1990).
Article CAS PubMed Google Scholar
Malone, R. E. et al. Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 128, 79–88 (1991).
Article CAS PubMed Central PubMed Google Scholar
Menees, T. M. & Roeder, G. S. MEI4, a yeast gene required for meiotic recombination. Genetics 123, 675–682 (1989).
Article CAS PubMed Central PubMed Google Scholar
Gardiner, J. M., Bullard, S. A., Chrome, C. & Malone, R. E. Molecular and genetic analysis of REC103, an early meiotic recombination gene in yeast. Genetics 146, 1265–1274 (1997).
Article CAS PubMed Central PubMed Google Scholar
Bhargava, J., Engebrecht, J. & Roeder, G. S. The rec102 mutant of yeast is defective in meiotic recombination and chromosome synapsis. Genetics 130, 59–69 (1992).
Article CAS PubMed Central PubMed Google Scholar
Galbraith, A. M. & Malone, R. E. Characterization of REC104, a gene required for early meiotic recombination in the yeast Saccharomyces cerevisiae. Dev. Genet. 13, 392–402 (1992).
Article CAS PubMed Google Scholar
Johzuka, K. & Ogawa, H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139, 1521–1532 (1995).
Article CAS PubMed Central PubMed Google Scholar
Game, J. C., Zamb, T. J., Braun, R. J., Resnick, M. & Roth, R. M. The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94, 51–68 (1980).
Article CAS PubMed Central PubMed Google Scholar
Jiao, K., Salem, L. & Malone, R. Support for a meiotic recombination initiation complex: interactions among Rec102p, Rec104p, and Spo11p. Mol. Cell Biol. 23, 5928–5938 (2003).
Article CAS PubMed Central PubMed Google Scholar
Kee, K. & Keeney, S. Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae. Genetics 160, 111–122 (2002).
Article CAS PubMed Central PubMed Google Scholar
Kee, K., Protacio, R. U., Arora, C. & Keeney, S. Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J. 23, 1815–1824 (2004).
Article CAS PubMed Central PubMed Google Scholar
Claeys Bouuaert, C. et al. Structural and functional characterization of the Spo11 core complex. Nat. Struct. Mol. Biol. 28, 92–102 (2021).
Article CAS PubMed Central PubMed Google Scholar
Arora, C., Kee, K., Maleki, S. & Keeney, S. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol. Cell 13, 549–559 (2004).
Comments (0)