Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).
Article CAS PubMed PubMed Central Google Scholar
Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).
Article CAS PubMed Google Scholar
Funk, L. et al. The phenotypic landscape of essential human genes. Cell 185, 4634–4653.e22 (2022).
Article CAS PubMed PubMed Central Google Scholar
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).
Article CAS PubMed PubMed Central Google Scholar
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).
Article CAS PubMed PubMed Central Google Scholar
Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).
Article CAS PubMed Google Scholar
Chavez, M., Chen, X., Finn, P. B. & Qi, L. S. Advances in CRISPR therapeutics. Nat. Rev. Nephrol. 19, 9–22 (2023).
Article CAS PubMed Google Scholar
Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157, 740–752 (2014).
Article CAS PubMed Google Scholar
Dorrity, M. W., Saunders, L. M., Queitsch, C., Fields, S. & Trapnell, C. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat. Commun. 11, 1537 (2020).
Article CAS PubMed PubMed Central Google Scholar
Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).
Article CAS PubMed PubMed Central Google Scholar
Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).
Article CAS PubMed Google Scholar
Rozenblatt-Rosen, O., Stubbington MJT, Regev, A. & Teichmann, S. A. The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).
Article CAS PubMed Google Scholar
Saunders, L. M. et al. Embryo-scale reverse genetics at single-cell resolution. Nature 623, 782–791 (2023). This paper deploys massively scalable single-cell RNA-seq on many developing wild-type and mutant zebrafish to measure the consequences of gene disruption on the whole transcriptome in each cell in the animal.
Article CAS PubMed PubMed Central Google Scholar
Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).
Article CAS PubMed PubMed Central Google Scholar
Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).
Article CAS PubMed PubMed Central Google Scholar
BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).
Article PubMed Central Google Scholar
Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).
Article CAS PubMed PubMed Central Google Scholar
Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. Nat. Meth. 16, 983–986 (2019).
Fu, R. et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Res. 9, 223 (2020).
Article CAS PubMed PubMed Central Google Scholar
Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).
Article PubMed PubMed Central Google Scholar
Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).
Article CAS PubMed Google Scholar
Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
Article CAS PubMed PubMed Central Google Scholar
Friedman, J., Hastie, T. & Tibshirani, R. Lasso and elastic-net regularized generalized linear models. glmnet https://glmnet.stanford.edu (2009).
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).
Article CAS PubMed Google Scholar
Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat. Biotechnol. 41, 1746–1757 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yu, F. et al. Variant to function mapping at single-cell resolution through network propagation. Nat. Biotechnol. 40, 1644–1653 (2022).
Article CAS PubMed PubMed Central Google Scholar
Cao, Y. et al. scDC: single cell differential composition analysis. BMC Bioinform. 20, 721 (2019).
Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat. Biotechnol. 39, 619–629 (2021).
Comments (0)