Revealing gene function with statistical inference at single-cell resolution

Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

Article  CAS  PubMed  Google Scholar 

Funk, L. et al. The phenotypic landscape of essential human genes. Cell 185, 4634–4653.e22 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

Article  CAS  PubMed  Google Scholar 

Chavez, M., Chen, X., Finn, P. B. & Qi, L. S. Advances in CRISPR therapeutics. Nat. Rev. Nephrol. 19, 9–22 (2023).

Article  CAS  PubMed  Google Scholar 

Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157, 740–752 (2014).

Article  CAS  PubMed  Google Scholar 

Dorrity, M. W., Saunders, L. M., Queitsch, C., Fields, S. & Trapnell, C. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat. Commun. 11, 1537 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

Article  CAS  PubMed  Google Scholar 

Rozenblatt-Rosen, O., Stubbington MJT, Regev, A. & Teichmann, S. A. The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).

Article  CAS  PubMed  Google Scholar 

Saunders, L. M. et al. Embryo-scale reverse genetics at single-cell resolution. Nature 623, 782–791 (2023). This paper deploys massively scalable single-cell RNA-seq on many developing wild-type and mutant zebrafish to measure the consequences of gene disruption on the whole transcriptome in each cell in the animal.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

Article  PubMed Central  Google Scholar 

Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. Nat. Meth. 16, 983–986 (2019).

Article  CAS  Google Scholar 

Fu, R. et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Res. 9, 223 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

Article  CAS  PubMed  Google Scholar 

Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedman, J., Hastie, T. & Tibshirani, R. Lasso and elastic-net regularized generalized linear models. glmnet https://glmnet.stanford.edu (2009).

Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

Article  CAS  PubMed  Google Scholar 

Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat. Biotechnol. 41, 1746–1757 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, F. et al. Variant to function mapping at single-cell resolution through network propagation. Nat. Biotechnol. 40, 1644–1653 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, Y. et al. scDC: single cell differential composition analysis. BMC Bioinform. 20, 721 (2019).

Article  CAS  Google Scholar 

Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat. Biotechnol. 39, 619–629 (2021).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif