Food and Agriculture Organization of the United Nations. International year of plant health 2020. FAO https://www.fao.org/plant-health-2020/about/en (2020).
Kourelis, J. et al. The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-surface receptor Cf-4. PLoS Genet. 18, e1010414 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tian, H. et al. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500–503 (2021).
Article CAS PubMed Google Scholar
Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ngou, B. P. M., Ahn, H. K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110–115 (2021).
Article CAS PubMed Google Scholar
Pruitt, R. N. et al. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495–499 (2021).
Article CAS PubMed Google Scholar
Snoeck, S., Garcia, A. G. & Steinbrenner, A. D. Plant receptor-like proteins (RLPs): structural features enabling versatile immune recognition. Physiol. Mol. Plant Pathol. 125, 102004 (2023).
Pok, B., Ngou, M., Ding, P. & Jones, J. D. G. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34, 1447–1478 (2022).
Boutrot, F. & Zipfel, C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55, 257–286 (2017).
Article CAS PubMed Google Scholar
Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).
Article CAS PubMed Google Scholar
Kunze, G. et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496–3507 (2004).
Article CAS PubMed PubMed Central Google Scholar
Toruño, T. Y., Stergiopoulos, I. & Coaker, G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54, 419 (2016).
Article PubMed PubMed Central Google Scholar
Buscaill, P. & van der Hoorn, R. A. L. Defeated by the nines: nine extracellular strategies to avoid microbe-associated molecular patterns recognition in plants. Plant Cell 33, 2116 (2021).
Article PubMed PubMed Central Google Scholar
Snoeck, S., Guayazán-Palacios, N. & Steinbrenner, A. D. Molecular tug-of-war: plant immune recognition of herbivory. Plant Cell 34, 1497–1513 (2022).
Article PubMed PubMed Central Google Scholar
Ngou, B. P. M., Heal, R., Wyler, M., Schmid, M. W. & Jones, J. D. G. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nat. Plants 8, 1146–1152 (2022). This study reports evidence for correlation between numbers of NLR-encoding and PRR-encoding genes across plant lineages and provides a comprehensive overview of PRR repertoires and evolution.
Article CAS PubMed PubMed Central Google Scholar
Liu, Q. et al. Curation, nomenclature, and topological classification of receptor-like kinases from 528 plant species for novel domain discovery and functional inference. Mol. Plant 17, 658–671 (2024).
Article CAS PubMed Google Scholar
Yin, Z., Liu, J. & Dou, D. RLKdb: a comprehensively curated database of plant receptor-like kinase families. Mol. Plant 17, 513–515 (2024).
Article CAS PubMed Google Scholar
Snoeck, S. et al. Leveraging coevolutionary insights and AI-based structural modeling to unravel receptor–peptide ligand-binding mechanisms. Proc. Natl Acad. Sci. USA 121, e2400862121 (2024). This publication was, to our knowledge, the first to use protein structure prediction to directly derive ligand–receptor interfaces.
Article CAS PubMed PubMed Central Google Scholar
Zhang, L. et al. Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae. Nat. Plants 7, 1254–1263 (2021).
Article CAS PubMed Google Scholar
Yang, Y. et al. Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms. Nat. Commun. 14, 1–12 (2023).
Torres Ascurra, Y. C. et al. Functional diversification of a wild potato immune receptor at its center of origin. Science 381, 891–897 (2023). This study reports the identification of the long elusive receptor for Pep-13 and Pep-25 and the evolutionary diversification of this receptor in potato.
Article CAS PubMed Google Scholar
Chen, Z. et al. Convergent evolution of immune receptors underpins distinct elicitin recognition in closely related Solanaceous plants. Plant Cell 35, 1186–1201 (2023).
Article PubMed PubMed Central Google Scholar
Helft, L. et al. LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. PLoS One 6, e21614 (2011).
Article CAS PubMed PubMed Central Google Scholar
Snoeck, S. et al. Evolutionary gain and loss of a plant pattern-recognition receptor for HAMP recognition. eLife 11, e81050 (2022).
Article CAS PubMed PubMed Central Google Scholar
Albert, I., Hua, C., Nürnberger, T., Pruitt, R. N. & Zhang, L. Surface sensor systems in plant immunity. Plant Physiol. 182, 1582–1596 (2020).
Article CAS PubMed Google Scholar
Shi, Q., Febres, V. J., Jones, J. B. & Moore, G. A. A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri. Hortic. Res. 3, 16022 (2016).
Article PubMed PubMed Central Google Scholar
Trdá, L. et al. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. N. Phytol. 201, 1371–1384 (2014).
Takai, R., Isogai, A., Takayama, S. & Che, F. S. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol. Plant Microbe Interact. 21, 1635–1642 (2008).
Article CAS PubMed Google Scholar
Hann, D. R. & Rathjen, J. P. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J. 49, 607–618 (2007).
Article CAS PubMed Google Scholar
Robatzek, S. et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol. Biol. 64, 539–547 (2007).
Article CAS PubMed Google Scholar
Dunning, F. M., Sun, W., Jansen, K. L., Helft, L. & Bent, A. F. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell 19, 3297–3313 (2007).
Article CAS PubMed PubMed Central Google Scholar
Kim, W. et al. Perception of unrelated microbe-associated molecular patterns triggers conserved yet variable physiological and transcriptional changes in Brassica rapa ssp. pekinensis. Hortic. Res. 7, 186 (2020).
Comments (0)