The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma

Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020;12:e11131.

Article  PubMed  PubMed Central  Google Scholar 

Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, et al. Ewing sarcoma. Nat Rev Dis Prim. 2018;4:5.

Article  PubMed  Google Scholar 

Balamuth NJ, Womer RB. Ewing’s sarcoma. Lancet Oncol. 2010;11:184–92.

Article  CAS  PubMed  Google Scholar 

Riggi N, Suvà ML, Stamenkovic I. Ewing’s Sarcoma. N. Engl J Med. 2021;384:154–64.

Article  CAS  PubMed  Google Scholar 

Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26:668–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovar H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma. 2011;2011:837474.

Article  PubMed  Google Scholar 

Cidre-Aranaz F, Alonso J. EWS/FLI1 target genes and therapeutic opportunities in Ewing sarcoma. Front Oncol. 2015;5:162.

Article  PubMed  PubMed Central  Google Scholar 

Fidaleo M, De Paola E, Paronetto MP. The RNA helicase A in malignant transformation. Oncotarget. 2016;7:28711–23.

Article  PubMed  PubMed Central  Google Scholar 

Cristini A, Groh M, Kristiansen MS, Gromak N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep. 2018;23:1891–905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee T, Paquet M, Larsson O, Pelletier J. Tumor cell survival dependence on the DHX9 DExH-box helicase. Oncogene. 2016;35:5093–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakraborty P, Huang JTJ, Hiom K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun. 2018;9:4346.

Article  PubMed  PubMed Central  Google Scholar 

Gulliver C, Hoffmann R, Baillie GS. The enigmatic helicase DHX9 and its association with the hallmarks of cancer. Future Sci OA. 2020;7:FSO650.

Article  PubMed  PubMed Central  Google Scholar 

Fidaleo M, Svetoni F, Volpe E, Miñana B, Caporossi D, Paronetto MP. Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9. Oncotarget. 2015;6:31740–57.

Article  PubMed  PubMed Central  Google Scholar 

Palombo R, Paronetto MP. pncCCND1_B Engages an Inhibitory Protein Network to Downregulate CCND1 Expression upon DNA Damage. Cancers (Basel) 2022; 14.

Palombo R, Verdile V, Paronetto MP. Poison-exon inclusion in DHX9 reduces its expression and sensitizes ewing sarcoma cells to chemotherapeutic Treatment. Cells. 2020;9:328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chellini L, Pieraccioli M, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 contributes to the transcriptional program of the androgen receptor in prostate cancer. J Exp Clin Cancer Res. 2022;41:178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, He L, Wu J, Wu X, Xie L, Dai W, et al. DHX9 contributes to the malignant phenotypes of colorectal cancer via activating NF-κB signaling pathway. Cell Mol Life Sci. 2021;78:8261–81.

Article  CAS  PubMed  Google Scholar 

Cao S, Sun R, Wang W, Meng X, Zhang Y, Zhang N, et al. RNA helicase DHX9 may be a therapeutic target in lung cancer and inhibited by enoxacin. Am J Transl Res. 2017;9:674–82.

CAS  PubMed  PubMed Central  Google Scholar 

Erkizan HV, Schneider JA, Sajwan K, Graham GT, Griffin B, Chasovskikh S et al. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1. Nucleic Acids Res. 2015.

Palombo R, Frisone P, Fidaleo M, Mercatelli N, Sette C, Paronetto MP. The promoter-associated noncoding RNA. Cancer Res. 2019;79:3570–82.

Article  CAS  PubMed  Google Scholar 

Kollareddy M, Sherrard A, Park JH, Szemes M, Gallacher K, Melegh Z, et al. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis. Cancer Lett. 2017;403:74–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spriano F, Chung EYL, Gaudio E, Tarantelli C, Cascione L, Napoli S, et al. The ETS inhibitors YK-4-279 and TK-216 are novel antilymphoma agents. Clin Cancer Res. 2019;25:5167–76.

Article  CAS  PubMed  Google Scholar 

Xue J, Li S, Shi P, Chen M, Yu S, Hong S, et al. The ETS inhibitor YK-4-279 suppresses thyroid cancer progression independently. Front Oncol. 2021;11:649323.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahim S, Minas T, Hong SH, Justvig S, Çelik H, Kont YS, et al. A small molecule inhibitor of ETV1, YK-4-279, prevents prostate cancer growth and metastasis in a mouse xenograft model. PLoS ONE. 2014;9:e114260.

Article  PubMed  PubMed Central  Google Scholar 

Povedano JM, Li V, Lake KE, Bai X, Rallabandi R, Kim J, et al. TK216 targets microtubules in Ewing sarcoma cells. Cell Chem Biol. 2022;29:1325–32.e1324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ludwig JA, Meyers PA, Dirksen U. Ewing’s sarcoma. N. Engl J Med. 2021;384:1476.

Article  PubMed  Google Scholar 

Yan M, Yang X, Wang H, Shao Q. The critical role of histone lysine demethylase KDM2B in cancer. Am J Transl Res. 2018;10:2222–33.

CAS  PubMed  PubMed Central  Google Scholar 

Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9:431–41.

Article  PubMed  PubMed Central  Google Scholar 

He S, Huang Q, Hu J, Li L, Xiao Y, Yu H, et al. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br J Cancer. 2019;121:922–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bierbaumer L, Katschnig AM, Radic-Sarikas B, Kauer MO, Petro JA, Högler S, et al. YAP/TAZ inhibition reduces metastatic potential of Ewing sarcoma cells. Oncogenesis. 2021;10:2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodríguez-Núñez P, Romero-Pérez L, Amaral AT, Puerto-Camacho P, Jordán C, Marcilla D, et al. Hippo pathway effectors YAP1/TAZ induce an EWS-FLI1-opposing gene signature and associate with disease progression in Ewing sarcoma. J Pathol. 2020;250:374–86.

Article  PubMed  Google Scholar 

Katschnig AM, Kauer MO, Schwentner R, Tomazou EM, Mutz CN, Linder M, et al. EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma. Oncogene. 2017;36:5995–6005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Truong DD, Lamhamedi-Cherradi SE, Ludwig JA. Targeting the IGF/PI3K/mTOR pathway and AXL/YAP1/TAZ pathways in primary bone cancer. J Bone Oncol. 2022;33:100419.

Article  PubMed  PubMed Central  Google Scholar 

Padeken J, Methot SP, Gasser SM. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol. 2022;23:623–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP, et al. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res. 2006;66:5574–81.

Article  CAS  PubMed  Google Scholar 

Filion C, Labelle Y. The oncogenic fusion protein EWS/NOR-1 induces transformation of CFK2 chondrogenic cells. Exp Cell Res. 2004;297:585–92.

Article  CAS  PubMed  Google Scholar 

Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge

留言 (0)

沒有登入
gif