TRIM45 facilitates NASH-progressed HCC by promoting fatty acid synthesis via catalyzing FABP5 ubiquitylation

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

Article  PubMed  Google Scholar 

Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223–38.

Article  PubMed  Google Scholar 

Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77:1598–606.

Article  PubMed  PubMed Central  Google Scholar 

Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J HEPATOL. 2019;70:151–71.

Article  PubMed  Google Scholar 

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

Article  PubMed  PubMed Central  Google Scholar 

Younossi ZM. Non-alcoholic fatty liver disease–a global public health perspective. J HEPATOL. 2019;70:531–44.

Article  PubMed  Google Scholar 

Organization, GWH. Global health sector strategies on HIV, viral hepatitis and sexually transmitted infections for the period 2022–2030. 2022.

Hindson J. Molecular landscape of NASH-HCC. Nature Reviews Gastroenterology & Hepatology. 2021;18:456–456.

Google Scholar 

Nakagawa H, Hayata Y, Kawamura S, Yamada T, Fujiwara N, Koike K. Lipid metabolic reprogramming in hepatocellular carcinoma. Cancers. 2018;10:447.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu K, Xia P, Chen X, Ma W, Yuan Y. ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol Metab. 2023;34:278–91.

Article  CAS  PubMed  Google Scholar 

Xiong L, Wu F, Wu Q, Xu L, Cheung OK, Kang W, et al. Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun. 2019;10:335.

Article  PubMed  PubMed Central  Google Scholar 

Horisawa K, Udono M, Ueno K, Ohkawa Y, Nagasaki M, Sekiya S, et al. The dynamics of transcriptional activation by hepatic reprogramming factors. MOL CELL. 2020;79:660–676.e668.

Article  CAS  PubMed  Google Scholar 

Jühling F, Hamdane N, Crouchet E, Li S, El Saghire H, Mukherji A, et al. Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma. Gut. 2021;70:157–69.

Article  PubMed  Google Scholar 

Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15:349–64.

Article  CAS  PubMed  Google Scholar 

Hall Z, Chiarugi D, Charidemou E, Leslie J, Scott E, Pellegrinet L, et al. Lipid remodeling in hepatocyte proliferation and hepatocellular carcinoma. Hepatol (Baltim, Md). 2021;73:1028–44.

Article  CAS  Google Scholar 

Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116–41.

Article  CAS  PubMed  Google Scholar 

Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants. 2021;10:174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma Y, Lee G, Heo S-Y, Roh Y-S. Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease. Antioxidants. 2021;11:91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int. 2021;15:21–35.

Article  PubMed  Google Scholar 

Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell death Dis. 2020;11:802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sangineto M, Villani R, Cavallone F, Romano A, Loizzi D, Serviddio G. Lipid metabolism in development and progression of hepatocellular carcinoma. Cancers. 2020;12:1419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim H, Rodriguez-Navas C, Kollipara RK, Kapur P, Pedrosa I, Brugarolas J, et al. Unsaturated fatty acids stimulate tumor growth through stabilization of β-catenin. Cell Rep. 2015;13:495–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishida T, Ciulli A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov: Advancing Sci Drug Discov. 2021;26:484–502.

Article  CAS  Google Scholar 

Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411–28.

Article  PubMed  Google Scholar 

Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–33.

Article  CAS  PubMed  Google Scholar 

Ge M-K, Zhang N, Xia L, Zhang C, Dong S-S, Li Z-M, et al. FBXO22 degrades nuclear PTEN to promote tumorigenesis. Nat Commun. 2020;11:1720.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu F, Ye M, Hu C, Chen J, Yan L, Gu D, et al. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/β‐catenin pathway. Cancer Sci. 2023;114:3553–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Investig. 2006;116:2464–72.

CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Ma Z, Jiang S, Hu W, Li T, Di S, et al. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog lipid Res. 2017;66:42–49.

Article  CAS  PubMed  Google Scholar 

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20.

Article  PubMed  Google Scholar 

Shah PA, Patil R, Harrison SA. NAFLD‐related hepatocellular carcinoma: The growing challenge. Hepatol (Baltim, Md). 2023;77:323–38.

Article  Google Scholar 

Xia SW, Wang ZM, Sun SM, Su Y, Li ZH, Shao JJ, et al. Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res. 2020;161:105218.

Article  CAS  PubMed  Google Scholar 

Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochemical Pharmacol. 2021;193:114764.

Article  CAS  Google Scholar 

Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Rep 2015;16:1071–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Wang F. Post-translational modifications of deubiquitinating enzymes: expanding the ubiquitin code. Front Pharm. 2021;12:685011.

Article  CAS  Google Scholar 

Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007;28:730–8.

Article  CAS  PubMed  Google Scholar 

Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. MOL Cancer. 2020;19:146.

Article  PubMed  PubMed Central  Google Scholar 

Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton BN, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. NAT COMMUN. 2018;9:2269.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif