Flaus, A. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).
Article CAS PubMed PubMed Central Google Scholar
Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).
Article CAS PubMed Google Scholar
Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).
Article PubMed PubMed Central Google Scholar
Pulice, J. L. & Kadoch, C. Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb. Symp. Quant. Biol. 81, 53–60 (2016).
Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes. Dev. 33, 936–959 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ho, P. J., Lloyd, S. M. & Bao, X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 146, dev178780 (2019).
Article CAS PubMed PubMed Central Google Scholar
Alendar, A. & Berns, A. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease. Genes Dev. 35, 1403–1430 (2021).
Article CAS PubMed PubMed Central Google Scholar
Clapier, C. R. Sophisticated conversations between chromatin and chromatin remodelers, and dissonances in cancer. Int. J. Mol. Sci. 22, ijms22115578 (2021).
Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian development. Development 143, 2882–2897 (2016). Hota and Bruneau comprehensively review genetic and functional studies showing the unique roles of chromatin remodellers during mammalian development.
Article CAS PubMed PubMed Central Google Scholar
Sundaramoorthy, R. & Owen-Hughes, T. Chromatin remodelling comes into focus. F1000Res 9, https://doi.org/10.12688/f1000research.21933.1 (2020).
Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes. Dev. 6, 2288–2298 (1992).
Article CAS PubMed Google Scholar
Sternberg, P. W., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567–577 (1987).
Article CAS PubMed Google Scholar
Nasmyth, K., Stillman, D. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48, 579–587 (1987).
Article CAS PubMed Google Scholar
Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).
Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222–229 (2013).
Article CAS PubMed PubMed Central Google Scholar
Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).
Article CAS PubMed Google Scholar
Langst, G., Bonte, E. J., Corona, D. F. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).
Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).
Article CAS PubMed Google Scholar
Ayala, R. et al. Structure and regulation of the human INO80-nucleosome complex. Nature 556, 391–395 (2018).
Article CAS PubMed PubMed Central Google Scholar
Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013). This is a clear and concise review of the basic biochemical mechanisms of nucleosome remodelling.
Article CAS PubMed PubMed Central Google Scholar
Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).
Längst, G. & Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561–2568 (2001).
Drane, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).
Article CAS PubMed PubMed Central Google Scholar
Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).
Article CAS PubMed PubMed Central Google Scholar
Dyer, M. A., Qadeer, Z. A., Valle-Garcia, D. & Bernstein, E. ATRX and DAXX: mechanisms and mutations. Cold Spring Harb. Perspect. Med. 7, a026567 (2017).
Article PubMed PubMed Central Google Scholar
Ni, K. et al. LSH mediates gene repression through macroH2A deposition. Nat. Commun. 11, 5647 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).
Article CAS PubMed Google Scholar
Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).
Article CAS PubMed Google Scholar
Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).
Article CAS PubMed PubMed Central Google Scholar
Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).
Article CAS PubMed PubMed Central Google Scholar
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 e1220 (2018).
Article CAS PubMed PubMed Central Google Scholar
Erdel, F. & Rippe, K. Chromatin remodelling in mammalian cells by ISWI-type complexes—where, when and why? FEBS J. 278, 3608–3618 (2011).
Article CAS PubMed Google Scholar
Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes. Dev. 10, 2117–2130 (1996).
Article CAS PubMed Google Scholar
Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI–SNF complex. EMBO J. 15, 5370–5382 (1996).
Article CAS PubMed PubMed Central Google Scholar
Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chang, C. Y. et al. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol. Cell 81, 4964–4978 e4968 (2021).
Article CAS PubMed PubMed Central Google Scholar
Biggin, M. D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).
Comments (0)