Methylenetetrahydrofolate Reductase Gene Polymorphism as a Risk Factor for Coronary Artery Disease

World Health Organisation. Cardiovascular diseases report 2019. https://www.who.int/health-topics/cardiovascular-diseases

Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus. 2020;12:e9349. https://doi.org/10.7759/cureus.9349.

Article  PubMed  PubMed Central  Google Scholar 

Zaghloul A, Iorgoveanu C, Desai A, Balakumaran K, Chen K. Methylenetetrahydrofolate Reductase polymorphism and premature coronary artery disease. Cureus. 2019;11(6):e5014. https://doi.org/10.7759/cureus.5014.PMID:31497444;PMCID:PMC6716763.

Article  PubMed  PubMed Central  Google Scholar 

Sreeniwas Kumar A, Sinha N. Cardiovascular disease in India: a 360 degree overview. Med J Armed Forc India. 2020;76(1):1–3. https://doi.org/10.1016/j.mjafi.2019.12.005.

Article  CAS  Google Scholar 

Shivkar RR, Gawade GC, Padwal MK, Diwan AG, Mahajan SA, Kadam CY. Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms with serum homocysteine, folate and vitamin B12 in patients with young coronary artery disease. Indian J Clin Biochem. 2022;37(2):224–31. https://doi.org/10.1007/s12291-021-00982-1.

Article  CAS  PubMed  Google Scholar 

McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118(4):564–78. https://doi.org/10.1161/CIRCRESAHA.115.306566.

Article  CAS  PubMed  Google Scholar 

Ramkaran P, Phulukdaree A, Khan S, Moodley D, Chuturgoon AA. Methylenetetrahydrofolate reductase C677T polymorphism is associated with increased risk of coronary artery disease in young South African Indians. Gene. 2015;571(1):28–32. https://doi.org/10.1016/j.gene.2015.06.044.

Article  CAS  PubMed  Google Scholar 

Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;10(14):6. https://doi.org/10.1186/1475-2891-14-6.

Article  CAS  Google Scholar 

Yuan S, Mason AM, Carter P, Burgess S, Larsson SC. Homocysteine, B vitamins, and cardiovascular disease: a Mendelian randomization study. BMC Med. 2021;19(1):97. https://doi.org/10.1186/s12916-021-01977-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009;60:39–54. https://doi.org/10.1146/annurev.med.60.041807.123308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song J, Hou J, Zhao Q, Liu X, Guo Q, Yin D, Song Y, Li X, Wang S, Wang X, Duan J. Polymorphism of MTHFR C677T Gene and the associations with the severity of essential hypertension in northern Chinese population. Int J Hypertens. 2020;14(2020):1878917. https://doi.org/10.1155/2020/1878917.

Article  CAS  Google Scholar 

Yadav U, Kumar P, Gupta S, Rai V. Distribution of MTHFR C677T gene polymorphism in healthy north Indian population and an updated meta-analysis. Indian J Clin Biochem. 2017;32(4):399–410. https://doi.org/10.1007/s12291-016-0619-0.

Article  CAS  PubMed  Google Scholar 

Li CX, Liu YG, Che YP, Ou JL, Ruan WC, Yu YL, Li HF. Association between MTHFR C677T polymorphism and susceptibility to autism spectrum disorders: a meta-analysis in Chinese Han population. Front Pediatr. 2021;10(9):598805. https://doi.org/10.3389/fped.2021.598805.

Article  Google Scholar 

Wilcken DE, Wang XL, Sim AS, McCredie RM, et al. Distribution in healthy and coronary populations of the methylenetetrahydrofolate reductase (MTHFR) C677T mutation. Arterioscler Thromb Vasc Biol. 1996;16(7):878–82. https://doi.org/10.1161/01.atv.16.7.878.

Article  CAS  PubMed  Google Scholar 

Huh HJ, Chi HS, Shim EH, Jang S, Park CJ. Gene–nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population. Thromb Res. 2006;117(5):501–6. https://doi.org/10.1016/j.thromres.2005.04.009.

Article  CAS  PubMed  Google Scholar 

Pereira AC, Miyakawa AA, Lopes NH, Soares PR, de Oliveira SA, Cesar LA, et al. Dynamic regulation of MTHFR mRNA expression and C677T genotype modulate mortality in coronary artery disease patients after revascularization. Thromb Res. 2007;121(1):25–32. https://doi.org/10.1016/j.thromres.2007.03.004.

Article  CAS  PubMed  Google Scholar 

Guerzoni AR, Biselli PM, Godoy MF, Souza DR, Haddad R, Eberlin MN, Pavarino-Bertelli EC, Goloni-Bertollo EM. Homocysteine and MTHFR and VEGF gene polymorphisms: impact on coronary artery disease. Arq Bras Cardiol. 2009;92(4):263–8. https://doi.org/10.1590/s0066-782x2009000400003.

Article  CAS  PubMed  Google Scholar 

Eftychiou C, Antoniades L, Makri L, Koumas L, Costeas PA, Kyriakou E, et al. Homocysteine levels and MTHFR polymorphisms in young patients with acute myocardial infarction: a case control study. Hellenic J Cardiol. 2012;53(3):189–94.

PubMed  Google Scholar 

Strauss E, Supinski W, Radziemski A, Oszkinis G, Pawlak AL, Gluszek J. Is hyperhomocysteinemia a causal factor for heart failure? The impact of the functional variants of MTHFR and PON1 on ischemic and non-ischemic etiology. Int J Cardiol. 2017;228:37–44. https://doi.org/10.1016/j.ijcard.2016.11.213.

Article  PubMed  Google Scholar 

Conkbayir C, Fahrioglu YR, Gencer P, Barin B, Yucel G, Yildiz CE, et al. Impact of genetic defects on coronary atherosclerosis among Turkish cypriots. Heart Surg Forum. 2017;20(5):E223–9. https://doi.org/10.1532/hsf.1587.

Article  PubMed  Google Scholar 

Luo Z, Lu Z, Muhammad I, Chen Y, Chen Q, Zhang J, et al. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis. 2018;17(1):191. https://doi.org/10.1186/s12944-018-0837-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long Y, Zhao XT, Liu C, Sun YY, Ma YT, Liu XY, et al. A case-control study of the association of the polymorphisms of MTHFR and APOE with risk factors and the severity of coronary artery disease. Cardiology. 2019;142(3):149–57. https://doi.org/10.1159/000499866.

Article  PubMed  Google Scholar 

Bouzidi N, Hassine M, Fodha H, Ben Messaoud M, Maatouk F, Gamra H. Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Sci Rep. 2020;10(1):10064. https://doi.org/10.1038/s41598-020-66937-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rallidis LS, Kosmas N, Stathopoulou E, Rallidi M, Gialeraki A. Homozygosity of the TT methylenetetrahydrofolate reductase C677T genotype is an independent long-term predictor of cardiac death in patients with premature myocardial infarction. Curr Med Res Opin. 2021;37(7):1079–84. https://doi.org/10.1080/03007995.2021.1912720.

Article  CAS  PubMed  Google Scholar 

Sugijo H, Sargowo D, Widjajanto E, Romdoni R. The role of methylenetetrahydrofolate reductase C677T gene polymorphism as a risk factor for coronary artery disease: a cross-sectional study in the Sidoarjo regional general hospital. Pan Afr Med J. 2022;41:212. https://doi.org/10.11604/pamj.2022.41.212.24916.

Article  PubMed  PubMed Central  Google Scholar 

Bickel C, Schnabel RB, Zengin E, Lubos E, Rupprecht H, Lackner K, Proust C, Tregouet D, Blankenberg S, Westermann D, Sinning C. Homocysteine concentration in coronary artery disease: Influence of three common single nucleotide polymorphisms. Nutr Metab Cardiovasc Dis. 2017;27(2):168–75. https://doi.org/10.1016/j.numecd.2016.09.005.

Article  CAS  PubMed  Google Scholar 

Lupi-Herrera E, Soto-López ME, Lugo-Dimas AJ, Núñez-Martínez ME, Gamboa R, Huesca-Gómez C, Sierra-Galán LM, Guarner-Lans V. Polymorphisms C677T and A1298C of MTHFR gene: homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clin Appl Thromb Hemost. 2019;25:1076029618780344. https://doi.org/10.1177/1076029618780344.

Article  CAS  PubMed  Google Scholar 

Zhang SY, Xuan C, Zhang XC, Zhu J, Yue K, Zhao P, He GW, et al. Association between MTHFR gene common variants, serum homocysteine, and risk of early-onset coronary artery disease: a case-control study. Biochem Genet. 2020;58(2):245–56. https://doi.org/10.1007/s10528-019-09937-x.

Article  CAS  PubMed  Google Scholar 

Vinukonda G, Shaik Mohammad N, MdNurul Jain J, Prasad Chintakindi K, Rama Devi Akella R. Genetic and environmental influences on total plasma homocysteine and coronary artery disease (CAD) risk among South Indians. Clin Chim Acta. 2009;405(1–2):127–31. https://doi.org/10.1016/j.cca.2009.04.015.

Article  CAS  PubMed  Google Scholar 

Tripathi R, Tewari S, Singh PK, Agarwal S. Association of homocysteine and methylene tetrahydrofolate reductase (MTHFR C677T) gene polymorphism with coronary artery disease (CAD) in the population of North India. Genet Mol Biol. 2010;33(2):224–8. https://doi.org/10.1590/S1415-47572010005000026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munshi R, Panchal F, Kulkarni V, Chaurasia A. Methylenetetrahydrofolate reductase polymorphism in healthy volunteers and its correlation with homocysteine levels in patients with thrombosis. Indian J Pharmacol. 2019;51(4):248–54. https://doi.org/10.4103/ijp.IJP_215_19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raina JK, Sharma M, Panjaliya RK, Dogra V, Bakaya A, Kumar P. Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with coronary artery disease (CAD). BMC Cardiovasc Disord. 2020;20(1):340. https://doi.org/10.1186/s12872-020-01618-7.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif