Adams ST, Leveson SH. Clinical prediction rules. BMJ. 2012;344:d8312. https://doi.org/10.1136/bmj.d8312.
Ranstam J, Cook JA, Collins GS. Clinical prediction models. Br J Surg. 2016;103(13):1886. https://doi.org/10.1002/bjs.10242.
Article CAS PubMed Google Scholar
Hemingway H, Croft P, Perel P, et al. Prognosis research strategy [PROGRESS] 1: a framework for researching clinical outcomes. BMJ. 2013;346:e5595. https://doi.org/10.1136/bmj.e5595.
Article PubMed PubMed Central Google Scholar
Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis research strategy [PROGRESS] 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380. https://doi.org/10.1371/journal.pmed.1001380.
Article PubMed PubMed Central Google Scholar
Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy [PROGRESS] 3: prognostic model research. PLoS Med. 2013;10(2):e1001381. https://doi.org/10.1371/journal.pmed.1001381.
Article PubMed PubMed Central Google Scholar
Hingorani AD, Windt DA, Riley RD, et al. Prognosis research strategy [PROGRESS] 4: stratified medicine research. BMJ. 2013;346:e5793. https://doi.org/10.1136/bmj.e5793.
Article PubMed PubMed Central Google Scholar
Chen Q, Hu L, Chen K. Construction of a nomogram based on a hypoxia-related lncRNA signature to improve the prediction of gastric Cancer prognosis. Front Genet. 2020;11:570325. https://doi.org/10.3389/fgene.2020.570325.
Article CAS PubMed PubMed Central Google Scholar
Sun Y, Li Y, Wu J, et al. Nomograms for prediction of overall and cancer-specific survival in young breast cancer. Breast Cancer Res Treat. 2020;184(2):597–613. https://doi.org/10.1007/s10549-020-05870-5.
Article CAS PubMed Google Scholar
Zheng Z, Zhou X, Zhang J, et al. Nomograms predict survival of patients with small bowel adenocarcinoma: a SEER-based study. Int J Clin Oncol. 2021;26(2):387–98. https://doi.org/10.1007/s10147-020-01813-8.
Dong YM, Sun J, Li YX, et al. Development and validation of a nomogram for assessing survival in patients with COVID-19 pneumonia. Clin Infect Dis. 2021;72(4):652–60. https://doi.org/10.1093/cid/ciaa963.
Article CAS PubMed Google Scholar
Dong W, Wan EYF, Fong DYT, et al. Prediction models and nomograms for 10-year risk of end-stage renal disease in Chinese type 2 diabetes mellitus patients in primary care. Diabetes Obes Metab. 2021;23(4):897–909. https://doi.org/10.1111/dom.14292.
Article CAS PubMed Google Scholar
Wu Y, Hu H, Cai J, et al. A prediction nomogram for the 3-year risk of incident diabetes among Chinese adults. Sci Rep. 2020;10(1):21716. https://doi.org/10.1038/s41598-020-78716-1.
Article CAS PubMed PubMed Central Google Scholar
Zheng T, Ye W, Wang X, et al. A simple model to predict risk of gestational diabetes mellitus from 8 to 20 weeks of gestation in Chinese women. BMC Pregnancy Childbirth. 2019;19(1):252. https://doi.org/10.1186/s12884-019-2374-8.
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Wang S, Lang JH. Development and validation of nomograms for predicting overall survival and Cancer-specific survival in patients with ovarian clear cell carcinoma. J Ovarian Res. 2020;13(1):123. https://doi.org/10.1186/s13048-020-00727-3.
Article PubMed PubMed Central Google Scholar
Qi X, Fu Y, Zhang M, et al. An innovative immune score-based prognostic nomogram for patients with cervical Cancer. Biomed Res Int. 2020;2020:8882576. https://doi.org/10.1155/2020/8882576.
Article PubMed PubMed Central Google Scholar
Ruan X, Li M, Mueck AO. Why does polycystic ovary syndrome [PCOS] need long-term management? Curr Pharm Des. 2018;24(39):4685–92. https://doi.org/10.2174/1381612825666190130104922.
Article CAS PubMed Google Scholar
Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod. 2012;27(10):3067–73. https://doi.org/10.1093/humrep/des232.
Legro RS. Diagnostic criteria in polycystic ovary syndrome. Semin Reprod Med. 2003;21(3):267–75. https://doi.org/10.1055/s-2003-43304.
Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004.
Azziz R, Carmina E, Dewailly D, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91(11):4237–45. https://doi.org/10.1210/jc.2006-0178.
Article CAS PubMed Google Scholar
Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565–92. https://doi.org/10.1210/jc.2013-2350.
Article CAS PubMed PubMed Central Google Scholar
Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602–18. https://doi.org/10.1093/humrep/dey256.
Article PubMed PubMed Central Google Scholar
Joo YY, Actkins K, Pacheco JA, et al. A polygenic and phenotypic risk prediction for polycystic ovary syndrome evaluated by phenome-wide association studies. J Clin Endocrinol Metab. 2020;105(6) https://doi.org/10.1210/clinem/dgz326.
Pedersen SD, Brar S, Faris P, Corenblum B. Polycystic ovary syndrome: validated questionnaire for use in diagnosis. Can Fam Physician. 2007;53(6):1042–7, 1.
Zhang XZ, Pang YL, Wang X, Li YH. Computational characterization and identification of human polycystic ovary syndrome genes. Sci Rep. 2018;8(1):12949. https://doi.org/10.1038/s41598-018-31110-4.
Article CAS PubMed PubMed Central Google Scholar
Deshmukh H, Papageorgiou M, Kilpatrick ES, Atkin SL, Sathyapalan T. Development of a novel risk prediction and risk stratification score for polycystic ovary syndrome. Clin Endocrinol. 2019;90(1):162–9. https://doi.org/10.1111/cen.13879.
Sun Q, Yang Y, Peng X, et al. Coagulation parameters predictive of polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2019;240:36–40. https://doi.org/10.1016/j.ejogrb.2019.06.018.
Article CAS PubMed Google Scholar
Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43(1):55–9. https://doi.org/10.1038/ng.732.
Article CAS PubMed Google Scholar
Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.
Article CAS PubMed Google Scholar
Goodarzi MO, Jones MR, Li X, et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J Med Genet. 2012;49(2):90–5. https://doi.org/10.1136/jmedgenet-2011-100427.
Article CAS PubMed Google Scholar
Welt CK, Styrkarsdottir U, Ehrmann DA, et al. Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J Clin Endocrinol Metab. 2012;97(7):E1342–7. https://doi.org/10.1210/jc.2011-3478.
Article CAS PubMed PubMed Central Google Scholar
Louwers YV, Stolk L, Uitterlinden AG, Laven JS. Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(12):E2006–12. https://doi.org/10.1210/jc.2013-2495.
Article CAS PubMed Google Scholar
Brower MA, Jones MR, Rotter JI, et al. Further investigation in europeans of susceptibility variants for polycystic ovary syndrome discovered in genome-wide association studies of Chinese individuals. J Clin Endocrinol Metab. 2015;100(1):E182–6. https://doi.org/10.1210/jc.2014-2689.
Article CAS PubMed Google Scholar
Day F, Karaderi T, Jones MR, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):e1007813. https://doi.org/10.1371/journal.pgen.1007813.
Article CAS PubMed PubMed Central Google Scholar
Vagios S, James KE, Sacha CR, et al. A patient-specific model combining antimullerian hormone and body mass index as a predictor of polycystic ovary syndrome and other oligo-anovulation disorders. Fertil Steril. 2021;115(1):229–37. https://doi.org/10.1016/j.fer
Comments (0)