Long non-coding ribonucleic acid SNHG18 induced human granulosa cell apoptosis via disruption of glycolysis in ovarian aging

Laisk T, Tšuiko O, Jatsenko T, Hõrak P, Otala M, Lahdenperä M, et al. Demographic and evolutionary trends in ovarian function and aging. Hum Reprod Update. 2019;25(1):34–50.

CAS  PubMed  Google Scholar 

Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update. 2021;27(1):27–47.

Article  CAS  PubMed  Google Scholar 

Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303–16.

Article  PubMed  Google Scholar 

Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685–95.

Article  CAS  PubMed  Google Scholar 

Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.

Article  CAS  PubMed  Google Scholar 

Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, et al. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update. 2022;28(2):232–54.

Article  CAS  PubMed  Google Scholar 

Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, et al. Cumulus cell transcripts transit to the bovine oocyte in Preparation for Maturation. Biol Reprod. 2016;94(1):16.

Article  PubMed  Google Scholar 

Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102(6):1751–61.

Article  CAS  PubMed  Google Scholar 

Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update. 2005;11(2):162–77.

Article  PubMed  Google Scholar 

Zhang J, Xu Y, Liu H, Pan Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod Biol Endocrinol. 2019;17(1):9.

Article  PubMed  PubMed Central  Google Scholar 

Johnson MT, Freeman EA, Gardner DK, Hunt PA. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod. 2007;77(1):2–8.

Article  CAS  PubMed  Google Scholar 

Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013;14(3):141–52.

Article  CAS  PubMed  Google Scholar 

Alberico HC, Woods DC. Role of Granulosa cells in the Aging Ovarian Landscape: a focus on mitochondrial and metabolic function. Front Physiol. 2021;12:800739.

Article  PubMed  Google Scholar 

Tatone C, Amicarelli F. The aging ovary–the poor granulosa cells. Fertil Steril. 2013;99(1):12–7.

Article  CAS  PubMed  Google Scholar 

Yeung CK, Wang G, Yao Y, Liang J, Tenny Chung CY, Chuai M, et al. BRE modulates granulosa cell death to affect ovarian follicle development and atresia in the mouse. Cell Death Dis. 2017;8(3):e2697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao X, Ke H, Qin Y, Chen ZJ. Molecular Genetics of premature ovarian insufficiency. Trends Endocrinol Metab. 2018;29(11):795–807.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang HM, Yu Y, et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–34.

Article  CAS  PubMed  Google Scholar 

Yang J, Li Y, Li S, Zhang Y, Feng R, Huang R, et al. Metabolic signatures in human follicular fluid identify lysophosphatidylcholine as a predictor of follicular development. Commun Biol. 2022;5(1):763.

Article  CAS  PubMed  PubMed Central  Google Scholar 

La H, Yoo H, Lee EJ, Thang NX, Choi HJ, Oh J, et al. Insights from the applications of single-cell transcriptomic analysis in germ cell development and reproductive medicine. Int J Mol Sci. 2021;22(2):823.

Sohni A, Tan K, Song HW, Burow D, de Rooij DG, Laurent L, et al. The neonatal and adult human testis defined at the single-cell level. Cell Rep. 2019;26(6):1501–17.

Article  PubMed  PubMed Central  Google Scholar 

Wang M, Liu X, Chang G, Chen Y, An G, Yan L, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell. 2018;23(4):599–614.

Article  CAS  PubMed  Google Scholar 

Li S, Chen LN, Zhu HJ, Feng X, Xie FY, Luo SM, et al. Single-cell RNA sequencing analysis of mouse follicular somatic cells†. Biol Reprod. 2021;105(5):1234–45.

Article  PubMed  Google Scholar 

Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, et al. Single-cell transcriptomic atlas primate ovarian aging. Cell. 2020;180(3):585–600.

Article  CAS  PubMed  Google Scholar 

Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482(7385):339–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu M, Wu Y, Wang F, Huang Y, Qian Y, Li J, et al. Effect of lncRNA MALAT1 on the Granulosa cell proliferation and pregnancy outcome in patients with PCOS. Front Endocrinol (Lausanne). 2022;13:825431.

Article  PubMed  Google Scholar 

Wang X, Zhang X, Dang Y, Li D, Lu G, Chan WY, et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. Nucleic Acids Res. 2020;48(8):4480–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouandaogo ZG, Frydman N, Hesters L, Assou S, Haouzi D, Dechaud H, et al. Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum Reprod. 2012;27(8):2438–47.

Article  CAS  PubMed  Google Scholar 

Bouckenheimer J, Fauque P, Lecellier CH, Bruno C, Commes T, Lemaître JM, et al. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep. 2018;8(1):2202.

Article  PubMed  PubMed Central  Google Scholar 

Yerushalmi GM, Salmon-Divon M, Yung Y, Maman E, Kedem A, Ophir L, et al. Characterization of the human cumulus cell transcriptome during final follicular maturation and ovulation. Mol Hum Reprod. 2014;20(8):719–35.

Article  CAS  PubMed  Google Scholar 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

Article  PubMed  PubMed Central  Google Scholar 

Robinson MD, McCarthy DJ, Smyth GK

Comments (0)

No login
gif