Issaad FZ, Tomé LI, Marques NV, Mouats C, Diculescu VC, Oliveira-Brett AM. Bevacizumab anticancer monoclonal antibody: native and denatured redox behaviour. Electrochim Acta. 2016;206:246–53. https://doi.org/10.1016/j.electacta.2016.04.097.
Tomé LI, Marques NV, Diculescu VC, Oliveira-Brett AM. In situ dsDNA-bevacizumab anticancer monoclonal antibody interaction electrochemical evaluation. Anal Chim Acta. 2015;898:28–33. https://doi.org/10.1016/j.aca.2015.09.049.
Article CAS PubMed Google Scholar
Lee JY, Lee HT, Shin W, Chae J, Choi J, Kim SH, Heo Y. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun. 2016;7(1):13354. https://doi.org/10.1038/ncomms13354.
Article CAS PubMed PubMed Central Google Scholar
Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Brahmer J. Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer: results from the CA209-003 study. J Clin Oncol. 2018;36(17):1675–84. https://doi.org/10.1200/JCO.2017.77.0412.
Article CAS PubMed Google Scholar
Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Postow MA. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–68. https://doi.org/10.1016/S1470-2045(16)30366-7.
Article CAS PubMed PubMed Central Google Scholar
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Sharma P. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. https://doi.org/10.1056/nejmoa1510665.
Article CAS PubMed PubMed Central Google Scholar
Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Hodi FS. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. https://doi.org/10.1056/nejmoa1200690.
Article PubMed PubMed Central Google Scholar
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Sznol M. Safety, activity, and immune correlates of ANTI–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/nejmoa1200690.
Article CAS PubMed PubMed Central Google Scholar
Enache TA, Oliveira-Brett AM. Phenol and Para-substituted phenols electrochemical oxidation pathways. J Electroanal Chem. 2011;655(1):9–16. https://doi.org/10.1016/j.jelechem.2011.02.022.
Pento JT. Monoclonal antibodies for the treatment of cancer. Anticancer Res. 2017;37(11):5935–59. https://doi.org/10.21873/anticanres.12040.
Article CAS PubMed Google Scholar
Derenne A, Derfoufi KM, Cowper B, Delporte C, Goormaghtigh E. FTIR spectroscopy as an analytical tool to compare glycosylation in therapeutic monoclonal antibodies. Anal Chim Acta. 2020;1112:62–71. https://doi.org/10.1016/j.aca.2020.03.038.
Article CAS PubMed Google Scholar
Abe K, Shibata K, Naito T, Karayama M, Hamada E, Maekawa M, Kawakami J. Quantitative LC-MS/MS method for NIVO’ nun human serum using IgG purification and immobilized tryptic digestion. Anal Methods. 2020;12(1):54–62. https://doi.org/10.1039/C9AY02087J.
Gopinath K, Yanadirao M, Pavani Y, Rao MS. A study of method development, validation and forced degradation for simultaneous quantification of cabozantinib and NIVO in bulk and pharmaceutical dosage form by RP-HPLC. Asian J Pharm Clin Res. 2019;12(2):102–6. https://doi.org/10.22159/ajpcr.2019.v12i2.29013.
Puszkiel A, Noé G, Boudou-Rouquette P, Le-Cossec C, Arrondeau J, Giraud JS, Blanchet B. Development and validation of an ELISA method for the quantification of NIVO in plasma from non-small-cell lung cancer patients. J Pharm Biomed Anal. 2017;139:30–6. https://doi.org/10.1016/j.jpba.2017.02.041.
Article CAS PubMed Google Scholar
Rauthan A, Patil P, Somashekhar SP, Zaveri S. Real world experience of adverse events with immunotherapy using PD1 inhibitors: Single center experience from India. Ann Oncol. 2018;29:26. https://doi.org/10.1093/annonc/mdy430.012.
Önal G Investigation of the electrochemical properties of vinblastine on boron-doped diamond electrode treated with anodic pre-treatment in anionic surfactant medium. Diam Relat Mater. 2023; 109699. https://doi.org/10.1016/j.diamond.2023.109699
McCormick WJ, Robertson PK, Skillen N, McCrudden D. The first electrochemical evaluation and voltammetric detection of the insecticide emamectin benzoate using an unmodified boron-doped diamond electrode. Results Chem. 2023;5:100865. https://doi.org/10.1016/j.rechem.2023.100865.
Budak F, Cetinkaya A, Kaya SI, Atici EB, Ozkan SA. Sensitive determination and electrochemical evaluation of anticancer drug tofacitinib in pharmaceutical and biological samples using glassy carbon and boron-doped diamond electrodes. Diam Relat Mater. 2023;133:109751. https://doi.org/10.1016/j.diamond.2023.109751.
Hatimuria M, Phukan P, Bag S, Ghosh J, Gavvala K, Pabbathi A, Das J. Green carbon dots: Applications in development of electrochemical sensors, assessment of toxicity as well as anticancer properties. Catalysts. 2023;13(3):537. https://doi.org/10.3390/catal13030537.
Mathew S, Thara CR, John N, Mathew B. Carbon dots from green sources as efficient sensor and as anticancer agent. J Photochem Photobiol A Chem. 2023;434:114237. https://doi.org/10.1016/j.jphotochem.2022.114237.
Liang K, Pan X, Chen Y, Huang, S. Anti-ovarian cancer actions and pharmacological targets of plumbagin. Naunyn Schmiedeberg's Arch Pharmacol. 2023; 1-6. https://doi.org/10.1007/s00210-023-02393-w
Önal G, Levent A. Electrochemical evaluation and determination of vindesine used in cancer chemotherapy at disposable pencil graphite electrode by voltammetric method. Monatshefte für Chemie-Chem Mon. 2023;154(2):205–13. https://doi.org/10.1007/s00706-023-03038-7.
Chaudhary R, Nohwal B, Bhardwaj H, Pundir CS. HER2 targeted noninvasive immunosensor based on pencil graphite electrode for detection of breast cancer. Sensors Int. 2023;4:100238. https://doi.org/10.1016/j.sintl.2023.100238.
Mahmoudi-Moghaddam H, Garkani-Nejad Z. A new electrochemical DNA biosensor for determination of anti-cancer drug chlorambucil based on a polypyrrole/flower-like platinum/NiCo 2 O 4/pencil graphite electrode. RSC Adv. 2022;12(8):5001–11. https://doi.org/10.1039/D1RA08291D.
Article CAS PubMed PubMed Central Google Scholar
Kiliç A, Aslan M, Önal G, Levent A. Firstly electrochemical investigetions and determination of anticoagulant drug edoxaban at single-use pencil graphite electrode: an eco-friendly and cost effective voltammetric method. DARU J Pharm Sci. 2023; 1-9. https://doi.org/10.1007/s40199-023-00478-8
Göktaş D, Talay Pınar P. First report for the electrochemical determination and proposed mechanism of poly (ADP ribose) polymerase inhibitor and new smart anticancer drug olaparib. Monatshefte für Chemie-Chem Mon 2023; 1-8. https://doi.org/10.1007/s00706-023-03069-0
Kalambate PK, Larpant N, Kalambate RP, Niamsi W, Primpray V, Karuwan C, Laiwattanapaisal W. A portable smartphone-compatible ratiometric electrochemical sensor with ultrahigh sensitivity for anticancer drug mitoxantrone sensing. Sensors Actuators B: Chemical. 2023;378:133103. https://doi.org/10.1016/j.snb.2022.133103.
Kozak J, Tyszczuk-Rotko K, Sztanke K, Sztanke M. Sensitive and selective voltammetric sensor based on anionic surfactant-modified screen-printed carbon for the quantitative analysis of an anticancer active fused azaisocytosine-containing congener. Int J Mol Sci. 2023;24(1):564. https://doi.org/10.3390/ijms24010564.
Shi J, Ning J, Hu G, Guo W, Zhou Y. Preparation of panchromatic carbon dots by drug function preservation strategy and its intracellular application for cancer diagnosis and therapeutics. Appl Surf Sci. 2023;618:156564. https://doi.org/10.1016/j.apsusc.2023.156564.
Machini WB, Marques NV, Oliveira-Brett AM. Nivolumab anticancer monoclonal antibody native and denatured direct electrochemistry at a glassy carbon electrode. J Electroanal Chem. 2019;851:113251. https://doi.org/10.1016/j.jelechem.2019.113251.
Torrinha Á, Jiyane N, Sabela M, Bisetty K, Montenegro MC, Araújo AN. Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries. Sci Rep. 2020;10(1):16535. https://doi.org/10.1038/s41598-020-73635-7.
Article CAS PubMed PubMed Central Google Scholar
Wang J, Kawde AN. Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Anal Chim Acta. 2001;431(2):219–24. https://doi.org/10.1016/S0003-2670(00)01318-0.
Wang, J., Kawde, A. N., & Sahlin, E. Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst. n.d.; 125(1):5-7. https://doi.org/10.1039/A907364G
Levent A, Yardim Y, Senturk Z. Voltammetric behavior of nicotine at pencil graphite electrode and its enhancement determination in the presence of anionic surfactant. Electrochim Acta. 2009;55(1):190–5. https://doi.org/10.1016/j.electacta.2009.08.035.
Megalamani Manjunath B, Patil Yuvarajgouda N, Nandibewoor Sharanappa T. A novel CTN-Fe3O4/g-C3N4 modified green synthetic sensor for electro-sensing of phenylbutazone. Mater Sci Semicond Process. 2023;166:107750. https://doi.org/10.1016/j.mssp.2023.107750.
Patil Yuvarajgouda N, Megalamani Manjunath B, Nandibewoor Sharanappa T. Graphitic carbon nitride infused with PVA-mn: ZnS modified carbon sensor for electrochemical investigation of metoclopramide hydrochloride. Diam Relat Mater. 2023;138:110254. https://doi.org/10.1016/j.diamond.2023.110254.
Megalamani Manjunath B, Patil Yuvarajgouda N, Nandibewoor Sharanappa T. YSZ/MoS2 modified carbon-based sensor for the determination of muscle relaxant agent chlorzoxazone: A novel electroanalytical strategy. Inorg Chem Commun. 2023;155:111074. https://doi.org/10.1016/j.inoche.2023.111074.
Comments (0)