Development of amphotericin B inclusion complex formulation in dissolvable microarray patches for intravaginal delivery

Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2016;214:15–21. https://doi.org/10.1016/j.ajog.2015.06.067.

Article  PubMed  Google Scholar 

Yano J, Sobel JD, Nyirjesy P, Sobel R, Williams VL, Yu Q, et al. Current patient perspectives of vulvovaginal candidiasis : incidence, symptoms, management and post- treatment outcomes. BMC Women’s Health. 2019;19:1–9.

Article  Google Scholar 

Haimhoffer Á, Rusznyák Á, Réti-Nagy K, Vasvári G, Váradi J, Vecsernyés M, et al. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci Pharm. 2019;87(4):33.

Article  CAS  Google Scholar 

Charumanee S, Okonogi S, Sirithunyalug J, Wolschann P, Viernstein H. Effect of cyclodextrin types and co-solvent on solubility of a poorly water soluble drug. Sci Pharm. 2016;84:694–704.

Article  CAS  PubMed  PubMed Central  Google Scholar 

López-Castillo C, Rodríguez-Fernández C, Córdoba M, Torrado JJ. Permeability characteristics of a new antifungal topical amphotericin B formulation with γ-cyclodextrins. Mol. 2018;23(12):3349.

Article  Google Scholar 

Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm. 2019;45:560–7. https://doi.org/10.1080/03639045.2019.1569023.

Article  CAS  PubMed  Google Scholar 

Zare MR, Khorram M, Barzegar S, Sarkari B, Asgari Q, Ahadian S, et al. Dissolvable carboxymethyl cellulose/polyvinylpyrrolidone microneedle arrays for transdermal delivery of Amphotericin B to treat cutaneous leishmaniasis. Int J Biol Macromol. 2021;182:1310–21. https://doi.org/10.1016/j.ijbiomac.2021.05.075.

Article  CAS  PubMed  Google Scholar 

Anjani QK, Domínguez-Robles J, Utomo E, Font M, Martínez-Ohárriz MC, Permana AD, et al. Inclusion complexes of rifampicin with native and derivatized cyclodextrins: In silico modeling, formulation, and characterization. Pharmaceuticals. 2022;15(1):20.

Article  CAS  Google Scholar 

Ghosh A, Biswas S, Ghosh T. Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J Young Pharm. 2011;3:205–10. https://doi.org/10.4103/0975-1483.83759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm - Drug Res. 2010;67:217–23.

CAS  Google Scholar 

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–71.

Article  PubMed  PubMed Central  Google Scholar 

Elim D, Fitri AMN, Mahfud MAS, Afika N, Sultan NAF, Hijrah, et al. Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: An ex vivo proof of concept study. Colloids Surfaces B Biointerfaces. 2023;222:113018. https://doi.org/10.1016/j.colsurfb.2022.113018.

Article  CAS  PubMed  Google Scholar 

Li Y, Wang G, Guo Z, Wang P, Wang A. Preparation of microcapsules coating and the study of their bionic anti-fouling performance. Mater (Basel). 2020;13(7):1669.

Article  CAS  Google Scholar 

AL-QuadeibRadwanSillerHorrocksWright BTMALBMC. Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharm J. 2015;23:290–302. https://doi.org/10.1016/j.jsps.2014.11.004.

Article  Google Scholar 

Donnelly RF, McCrudden MTC, Alkilani AZ, Larrañeta E, McAlister E, Courtenay AJ, et al. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One. 2014;9(10):e111547.

Article  PubMed  PubMed Central  Google Scholar 

Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472:65–73.

Article  PubMed  PubMed Central  Google Scholar 

Mudjahid M, Nainu F, Utami RN, Sam A, Marzaman ANF, Roska TP, et al. Enhancement in Site-Specific Delivery of Chloramphenicol Using Bacterially Sensitive Microparticle Loaded into Dissolving Microneedle: Potential for Enhanced Effectiveness Treatment of Cellulitis. ACS Appl Mater Interfaces. 2022;14(51):56560–77.

Article  CAS  PubMed  Google Scholar 

Hidayatullah T, Nasir F, Khattak MA, Pervez S, Almalki WH, Alasmari F, et al. Hybrid Dissolving Microneedle-Mediated Delivery of Ibuprofen: Solubilization, Fabrication, and Characterization. Pharmaceuticals. 2023;16:1–16.

Article  Google Scholar 

Roy G, Galigama RD, Thorat VS, Mallela LS, Roy S, Garg P, et al. Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis. Int J Pharm. 2019;572:118808. https://doi.org/10.1016/j.ijpharm.2019.118808. (Elsevier B.V).

Article  CAS  PubMed  Google Scholar 

Yang ZG, Sun HX, Fang WH. Haemolytic activities and adjuvant effect of Astragalus membranaceus saponins (AMS) on the immune responses to ovalbumin in mice. Vaccine. 2005;23:5196–203.

Article  CAS  PubMed  Google Scholar 

Ananda PWR, Elim D, Zaman HS, Muslimin W, Tunggeng MGR, Permana AD. Combination of transdermal patches and solid microneedles for improved transdermal delivery of primaquine. Int J Pharm. 2021;609:121204. https://doi.org/10.1016/j.ijpharm.2021.121204.

Article  CAS  PubMed  Google Scholar 

Aziz AYR, Hasir NA, Imran NBP, Hamdan MF, Mahfufah U, Wafiah N, et al. Development of hydrogel-forming microneedles for transdermal delivery of albendazole from liquid reservoir. J Biomater Sci Polym Ed. 2023;34:1101–20. https://doi.org/10.1080/09205063.2022.2157671.

Article  CAS  PubMed  Google Scholar 

Permana AD, Paredes AJ, Volpe-Zanutto F, Anjani QK, Utomo E, Donnelly RF. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur J Pharm Biopharm. 2020;154:50–61. https://doi.org/10.1016/j.ejpb.2020.06.025.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99:306–14. https://doi.org/10.1016/j.cmpb.2010.01.007.

Article  PubMed  Google Scholar 

Görgülü G, Dede B. Comparison of The Molecular Docking Properties of Three Potentially Active Agents. Int J Comput Exp Sci Eng. 2023;9:81–5.

Article  Google Scholar 

Saokham P, Muankaew C, Jansook P, Loftsson T, Loh GOK, Tan YTF, et al. Solubility of cyclodextrins and drug/cyclodextrin complexes. Asian J Pharm Sci. 2016;11:1–15. https://doi.org/10.1016/j.ajps.2016.02.009.

Article  Google Scholar 

Poulson BG, Alsulami QA, Sharfalddin A, El Agammy EF, Mouffouk F, Emwas A-H, et al. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides. 2021;3:1–31.

Article  Google Scholar 

Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.

Article  CAS  PubMed  Google Scholar 

Gidwani B, Vyas A. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. Biomed Res Int. 2015;2015(1):198268.

PubMed  PubMed Central  Google Scholar 

Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

Article  CAS  PubMed  Google Scholar 

Ruiz HK, Serrano DR, Dea-Ayuela MA, Bilbao-Ramos PE, Bolás-Fernández F, Torrado JJ, et al. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int J Pharm. 2014;473:148–57. https://doi.org/10.1016/j.ijpharm.2014.07.004.

Article  CAS  PubMed  Google Scholar 

Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today. 2016;21:356–62. https://doi.org/10.1016/j.drudis.2015.11.017.

Article 

Comments (0)

No login
gif