Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2016;214:15–21. https://doi.org/10.1016/j.ajog.2015.06.067.
Yano J, Sobel JD, Nyirjesy P, Sobel R, Williams VL, Yu Q, et al. Current patient perspectives of vulvovaginal candidiasis : incidence, symptoms, management and post- treatment outcomes. BMC Women’s Health. 2019;19:1–9.
Haimhoffer Á, Rusznyák Á, Réti-Nagy K, Vasvári G, Váradi J, Vecsernyés M, et al. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci Pharm. 2019;87(4):33.
Charumanee S, Okonogi S, Sirithunyalug J, Wolschann P, Viernstein H. Effect of cyclodextrin types and co-solvent on solubility of a poorly water soluble drug. Sci Pharm. 2016;84:694–704.
Article CAS PubMed PubMed Central Google Scholar
López-Castillo C, Rodríguez-Fernández C, Córdoba M, Torrado JJ. Permeability characteristics of a new antifungal topical amphotericin B formulation with γ-cyclodextrins. Mol. 2018;23(12):3349.
Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm. 2019;45:560–7. https://doi.org/10.1080/03639045.2019.1569023.
Article CAS PubMed Google Scholar
Zare MR, Khorram M, Barzegar S, Sarkari B, Asgari Q, Ahadian S, et al. Dissolvable carboxymethyl cellulose/polyvinylpyrrolidone microneedle arrays for transdermal delivery of Amphotericin B to treat cutaneous leishmaniasis. Int J Biol Macromol. 2021;182:1310–21. https://doi.org/10.1016/j.ijbiomac.2021.05.075.
Article CAS PubMed Google Scholar
Anjani QK, Domínguez-Robles J, Utomo E, Font M, Martínez-Ohárriz MC, Permana AD, et al. Inclusion complexes of rifampicin with native and derivatized cyclodextrins: In silico modeling, formulation, and characterization. Pharmaceuticals. 2022;15(1):20.
Ghosh A, Biswas S, Ghosh T. Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J Young Pharm. 2011;3:205–10. https://doi.org/10.4103/0975-1483.83759.
Article CAS PubMed PubMed Central Google Scholar
Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm - Drug Res. 2010;67:217–23.
Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–71.
Article PubMed PubMed Central Google Scholar
Elim D, Fitri AMN, Mahfud MAS, Afika N, Sultan NAF, Hijrah, et al. Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: An ex vivo proof of concept study. Colloids Surfaces B Biointerfaces. 2023;222:113018. https://doi.org/10.1016/j.colsurfb.2022.113018.
Article CAS PubMed Google Scholar
Li Y, Wang G, Guo Z, Wang P, Wang A. Preparation of microcapsules coating and the study of their bionic anti-fouling performance. Mater (Basel). 2020;13(7):1669.
AL-QuadeibRadwanSillerHorrocksWright BTMALBMC. Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharm J. 2015;23:290–302. https://doi.org/10.1016/j.jsps.2014.11.004.
Donnelly RF, McCrudden MTC, Alkilani AZ, Larrañeta E, McAlister E, Courtenay AJ, et al. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One. 2014;9(10):e111547.
Article PubMed PubMed Central Google Scholar
Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472:65–73.
Article PubMed PubMed Central Google Scholar
Mudjahid M, Nainu F, Utami RN, Sam A, Marzaman ANF, Roska TP, et al. Enhancement in Site-Specific Delivery of Chloramphenicol Using Bacterially Sensitive Microparticle Loaded into Dissolving Microneedle: Potential for Enhanced Effectiveness Treatment of Cellulitis. ACS Appl Mater Interfaces. 2022;14(51):56560–77.
Article CAS PubMed Google Scholar
Hidayatullah T, Nasir F, Khattak MA, Pervez S, Almalki WH, Alasmari F, et al. Hybrid Dissolving Microneedle-Mediated Delivery of Ibuprofen: Solubilization, Fabrication, and Characterization. Pharmaceuticals. 2023;16:1–16.
Roy G, Galigama RD, Thorat VS, Mallela LS, Roy S, Garg P, et al. Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis. Int J Pharm. 2019;572:118808. https://doi.org/10.1016/j.ijpharm.2019.118808. (Elsevier B.V).
Article CAS PubMed Google Scholar
Yang ZG, Sun HX, Fang WH. Haemolytic activities and adjuvant effect of Astragalus membranaceus saponins (AMS) on the immune responses to ovalbumin in mice. Vaccine. 2005;23:5196–203.
Article CAS PubMed Google Scholar
Ananda PWR, Elim D, Zaman HS, Muslimin W, Tunggeng MGR, Permana AD. Combination of transdermal patches and solid microneedles for improved transdermal delivery of primaquine. Int J Pharm. 2021;609:121204. https://doi.org/10.1016/j.ijpharm.2021.121204.
Article CAS PubMed Google Scholar
Aziz AYR, Hasir NA, Imran NBP, Hamdan MF, Mahfufah U, Wafiah N, et al. Development of hydrogel-forming microneedles for transdermal delivery of albendazole from liquid reservoir. J Biomater Sci Polym Ed. 2023;34:1101–20. https://doi.org/10.1080/09205063.2022.2157671.
Article CAS PubMed Google Scholar
Permana AD, Paredes AJ, Volpe-Zanutto F, Anjani QK, Utomo E, Donnelly RF. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur J Pharm Biopharm. 2020;154:50–61. https://doi.org/10.1016/j.ejpb.2020.06.025.
Article CAS PubMed Google Scholar
Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99:306–14. https://doi.org/10.1016/j.cmpb.2010.01.007.
Görgülü G, Dede B. Comparison of The Molecular Docking Properties of Three Potentially Active Agents. Int J Comput Exp Sci Eng. 2023;9:81–5.
Saokham P, Muankaew C, Jansook P, Loftsson T, Loh GOK, Tan YTF, et al. Solubility of cyclodextrins and drug/cyclodextrin complexes. Asian J Pharm Sci. 2016;11:1–15. https://doi.org/10.1016/j.ajps.2016.02.009.
Poulson BG, Alsulami QA, Sharfalddin A, El Agammy EF, Mouffouk F, Emwas A-H, et al. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides. 2021;3:1–31.
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.
Article CAS PubMed Google Scholar
Gidwani B, Vyas A. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. Biomed Res Int. 2015;2015(1):198268.
PubMed PubMed Central Google Scholar
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.
Article CAS PubMed Google Scholar
Ruiz HK, Serrano DR, Dea-Ayuela MA, Bilbao-Ramos PE, Bolás-Fernández F, Torrado JJ, et al. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int J Pharm. 2014;473:148–57. https://doi.org/10.1016/j.ijpharm.2014.07.004.
Article CAS PubMed Google Scholar
Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today. 2016;21:356–62. https://doi.org/10.1016/j.drudis.2015.11.017.
Comments (0)