Electroceuticals: Unlocking the promise of therapies

Harwansh RK, Deshmukh R. Breast cancer: an insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit Rev Oncol Hematol. 2020. https://doi.org/10.1016/j.critrevonc.2020.103070.

Shah K, Chhabra S, Singh Chauhan N. Chemistry and anticancer activity of cardiac glycosides: a review. Chem Biol Drug Des. 2022;100(3):364–75. https://doi.org/10.1111/cbdd.14096.

Article  CAS  PubMed  Google Scholar 

da Cunha Xavier J, dos Santos HS, Machado Marinho M, Nunes da Rocha M, Rodrigues Teixeira AM, Coutinho HDM, et al. Chalcones as potent agents against staphylococcus aureus: A computational approach. Lett Drug Des Discov. 2023;21(4):684-700. https://doi.org/10.2174/1570180820666230120145921.

Sharma H, Singh S, Pathak S. Pathogenesis of COVID-19, Disease Outbreak: A review. Curr Pharm Biotechnol. 2021;22(12):15910–1601. https://doi.org/10.2174/1389201022666210127113441.

Article  CAS  Google Scholar 

Krishna G, Shah K. Current drifts in design and development of prodrugs. ECS Trans. 2022;107(1):18939. https://doi.org/10.1149/10701.18939ecst.

Article  CAS  Google Scholar 

Mishra R, Chaudhary K, Mishra I. AI in health science: a perspective. Curr Pharm Biotechnol. 2022;24(9):1149–63. https://doi.org/10.2174/1389201023666220929145220.

Article  CAS  Google Scholar 

Packer S, Mercado N, Haridat A. Bioelectronic medicine ethical concerns. Cold Spring Harb Perspect Med. 2019;9(10):a034363. https://doi.org/10.1101/cshperspect.a034363.

Article  PubMed  PubMed Central  Google Scholar 

Horch KW, Dhillon GS. Neuroprosthetics Theory and Practice. J Chem Inf Model. 2004.

Richardson RT, Ibbotson MR, Thompson AC, Wise AK, Fallon JB. Optical stimulation of neural tissue. Healthc Technol Lett. 2020;7(3):58–65. https://doi.org/10.1049/htl.2019.0114.

Article  PubMed  PubMed Central  Google Scholar 

Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540(7633):379–85. https://doi.org/10.1038/nature21004.

Article  CAS  PubMed  Google Scholar 

Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141(2):171–98. https://doi.org/10.1016/j.jneumeth.2004.10.020.

Article  PubMed  Google Scholar 

Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518.

Article  CAS  PubMed  Google Scholar 

Long Y, Li J, Yang F, Wang J, Wang X. Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv Sci. 2021;8(8):2004023. https://doi.org/10.1002/advs.202004023.

Article  CAS  Google Scholar 

Zhao M, Pu J, Forrester JV, McCaig CD. Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 2002;16(8):857–9. https://doi.org/10.1096/fj.01-0811fje.

Article  CAS  PubMed  Google Scholar 

Slavin KV. Spinal stimulation for Pain: future applications. Neurotherapeutics. 2014;11(3):535–42. https://doi.org/10.1007/s13311-014-0273-2.

Article  PubMed  PubMed Central  Google Scholar 

Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018;88:2–10. https://doi.org/10.1016/j.yebeh.2018.06.032.

Article  Google Scholar 

Strollo PJ, Soose RJ, Maurer JT, de Vries N, Cornelius J, Froymovich O, et al. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014;370:139–49. https://doi.org/10.1056/nejmoa1308659.

Article  CAS  PubMed  Google Scholar 

Sacramento JF, Chew DJ, Melo BF, Donegá M, Dopson W, Guarino MP, et al. Bioelectronic modulation of carotid sinus nerve activity in the rat: a potential therapeutic approach for type 2 diabetes. Diabetologia. 2018;61. https://doi.org/10.1007/s00125-017-4533-7

Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113(29):8284–9. https://doi.org/10.1073/pnas.1605635113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: Effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol. 2019;16:89–105. https://doi.org/10.1038/s41575-018-0078-6.

Article  PubMed  Google Scholar 

Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci. 2019;1454(1):42–55. https://doi.org/10.1111/nyas.14182.

Article  PubMed  PubMed Central  Google Scholar 

García-Alías G, del Valle J, Delgado-Martínez I, Navarro X. Electroceutical therapies for injuries of the nervous system. Handb Innov Cent Nerv Syst Regen Med. 2020 511-537. https://doi.org/10.1016/B978-0-12-818084-6.00014-3.

Bornstein SR, Ben-Haim S. Electroceuticals for the metabolic syndrome. Horm Metab Res. 2015;47(06):401–3. https://doi.org/10.1055/s-0035-1548939.

Article  CAS  PubMed  Google Scholar 

Kloth LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds. 2005. https://doi.org/10.1177/1534734605275733.

Tai G, Wang F, Wada T, Forrester JV, Guo A, Reid B, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006;442(7101):457–60. https://doi.org/10.1038/nature04925.

Article  CAS  PubMed  Google Scholar 

Cho MR, Thatte HS, Lee RC, Golan DE. Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann Biomed Eng. 2000;28:234–43. https://doi.org/10.1114/1.263.

Article  CAS  PubMed  Google Scholar 

Bourguignon GJ, Bourguignon LYW. Electric stimulation of protein and DNA synthesis in human fibroblasts. FASEB J. 1987;1(5):398–402. https://doi.org/10.1096/fasebj.1.5.3678699.

Article  CAS  PubMed  Google Scholar 

Goldman RJ, Brewley BI, Golden MA. Electrotherapy reoxygenates inframalleolar ischemic wounds on diabetic patients: A case series. Adv Skin Wound Care. 2002;15(3):112–20. https://doi.org/10.1097/00129334-200205000-00006.

Article  PubMed  Google Scholar 

Castana O, Dimitrouli A, Argyrakos T, Theodorakopoulou E, Stampolidis N, Papadopoulos E, et al. Wireless electrical stimulation: an innovative powerful tool for the treatment of a complicated chronic ulcer. Int J Low Extrem Wounds. 2013;12. https://doi.org/10.1177/1534734613476517.

Ramadhinara A, Poulas K. Use of wireless microcurrent stimulation for the treatment of diabetes-related wounds: 2 case reports. Adv Ski Wound Care. 2013;26(1):1–4. https://doi.org/10.1097/01.ASW.0000425942.32993.e9.

Article  Google Scholar 

Kim H, Park S, Housler G, Marcel V, Cross S, Izadjoo M. An overview of the efficacy of a next generation electroceutical wound care device. Mil Med. 2016;181:184–90. https://doi.org/10.7205/MILMED-D-15-00157.

Article  PubMed  Google Scholar 

Hoffman H. Acceleration and retardation of the process of axon-sprouting in partially devervated muscles. Aust J Exp Biol Med Sci. 1952;6:541–66. https://doi.org/10.1038/icb.1952.52.

Article  Google Scholar 

Nix WA, Hopf HC. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 1983;271(1):21–5. https://doi.org/10.1016/0006-8993(83)90360-8.

Article  Google Scholar 

Pockett S, Gavin RM. Acceleration of peripheral nerve regeneration after crush injury in rat. Neurosci Lett. 1985;59(2):221–4. https://doi.org/10.1016/0304-3940(85)90203-4.

Article  CAS  PubMed  Google Scholar 

Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602–8. https://doi.org/10.1523/jneurosci.20-07-02602.2000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

English AW, Schwartz G, Meador W, Sabatier MJ, Mulligan A. Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev Neurobiol. 2007;67(2):158–72. https://doi.org/10.1002/dneu.20339.

Article 

Comments (0)

No login
gif