Structure based exploration of mitochondrial alpha carbonic anhydrase inhibitors as potential leads for anti-obesity drug development

Sarma S, Sockalingam S, Dash S. Obesity as a disease: trends in obesity rates and complications. Diabetes Obes Metab. 2021;23:3–16. https://doi.org/10.1111/dom.14290.

Article  PubMed  CAS  Google Scholar 

Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions—but do we have the will? Fertil Steril. 2017;107:833–9. https://doi.org/10.1016/j.fertnstert.2017.02.104.

Article  PubMed  Google Scholar 

Nguyen N, Champion JK, Ponce J, Quebbemann B, Patterson E, Pham B, et al. A review of unmet needs in obesity management. Obes Surg. 2012;22:956–66. https://doi.org/10.1007/s11695-012-0634-z.

Article  PubMed  CAS  Google Scholar 

Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2017;14:12–24. https://doi.org/10.1038/nrendo.2017.122.

Article  PubMed  CAS  Google Scholar 

Kakkar AK, Dahiya N. Drug treatment of obesity: current status and future prospects. J Intern Med. 2015;26:89–94. https://doi.org/10.1016/j.ejim.2015.01.005.

Article  CAS  Google Scholar 

Singh AK, Singh R. Pharmacotherapy in obesity: a systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev Clin Pharmacol. 2019;13:53–64. https://doi.org/10.1080/17512433.2020.1698291.

Article  PubMed  CAS  Google Scholar 

Golden A. Current pharmacotherapies for obesity. J Am Assoc Nurse Pract. 2017;29:S43. https://doi.org/10.1002/2327-6924.12519.

Article  PubMed  Google Scholar 

Gadde KM, Pritham Raj Y. Pharmacotherapy of obesity: clinical trials to clinical practice. Curr Diab Rep. 2017;17:1. https://doi.org/10.1007/s11892-017-0859-2.

Article  Google Scholar 

Gorain B, Choudhury H, Sengupta P, Verma RK, Pandey M. Extrapolation from clinical trial to practice: current pharmacotherapy on obesity. In: Kutty MK, Elengoe A, editors. Obesity and its impact on health. Springer; 2021. p. 125–48. https://doi.org/10.1007/978-981-33-6408-0_10.

Chapter  Google Scholar 

Pulipati VP, Pannain S. Pharmacotherapy of obesity in complex diseases. Clin Obes. 2021;12:e12497. https://doi.org/10.1111/cob.12497.

Article  PubMed  Google Scholar 

Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov. 2019;14:1175–97. https://doi.org/10.1080/17460441.2019.1651289.

Article  PubMed  CAS  Google Scholar 

Baranauskienė L, Matulis D. Catalytic activity and inhibition of human carbonic anhydrases. In: Matulis D, editor. Carbonic anhydrase as drug target. Cham: Springer; 2019. p. 39–49. https://doi.org/10.1007/978-3-030-12780-0_3.

Chapter  Google Scholar 

De Simone G, Supuran C. Antiobesity carbonic anhydrase inhibitors. Curr Top Med Chem. 2007;7:879–84. https://doi.org/10.2174/156802607780636762.

Article  PubMed  Google Scholar 

Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen S-A, Capasso C, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum —the η-carbonic anhydrases. Bioorg Med Chem Lett. 2014;24:4389–96. https://doi.org/10.1016/j.bmcl.2014.08.015.

Article  PubMed  CAS  Google Scholar 

Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci. 2016;113:9828–33. https://doi.org/10.1073/pnas.1603112113.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23:146–89. https://doi.org/10.1002/med.10025.

Article  PubMed  CAS  Google Scholar 

Bernardino RL, Dias TR, Moreira BP, Cunha M, Barros A, Oliveira E, Sousa M, Alves MG, Oliveira PF. Carbonic anhydrases are involved in mitochondrial biogenesis and control the production of lactate by human sertoli cells. FEBS J. 2019;286(7):1393–406.

Article  PubMed  CAS  Google Scholar 

Ismail IS. The role of carbonic anhydrase in hepatic glucose production. Curr Diab Rev. 2018;14:108–12. https://doi.org/10.2174/1573399812666161214122351.

Article  CAS  Google Scholar 

Cecchi A, Taylor SD, Liu Y, Hill B, Vullo D, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: inhibition of the human isozymes I, II, VA, and IX with a library of substituted difluoromethanesulfonamides. Bioorg Med Chem Lett. 2005;15:5192–6. https://doi.org/10.1016/j.bmcl.2005.08.102.

Article  PubMed  CAS  Google Scholar 

Blackburn GM, Türkmen H. Synthesis of α-fluoro-and α, α-difluoro-benzenemethanesulfonamides: new inhibitors of carbonic anhydrase. Org Biomol Chem. 2005;3(2):225–6. https://doi.org/10.1039/B417327A.

Article  PubMed  CAS  Google Scholar 

Ho YT, Purohit A, Vicker N, Newman SP, Robinson JJ, Leese MP, Ganeshapillai D, Woo LW, Potter BV, Reed MJ. Inhibition of carbonic anhydrase II by steroidal and non-steroidal sulphamates. Biochem Biophys Res Commun. 2003;305(4):909–14. https://doi.org/10.1016/S0006-291X(03)00865-9.

Article  PubMed  CAS  Google Scholar 

Liu Y, Ahmed V, Hill B, Taylor SD. Synthesis of a non-hydrolyzable estrone sulfate analogue bearing the difluoromethanesulfonamide group and its evaluation as a steroid sulfatase inhibitor. Org Biomol Chem. 2005;3(18):3329–35. https://doi.org/10.1039/B508852F.

Article  PubMed  CAS  Google Scholar 

Poulsen SA, Wilkinson BL, Innocenti A, Vullo D, Supuran CT. Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett. 2008;18:4624–7. https://doi.org/10.1016/j.bmcl.2008.07.010.

Article  PubMed  CAS  Google Scholar 

Güzel Ö, Innocenti A, Scozzafava A, Salman A, Supuran CT. Carbonic anhydrase inhibitors. Aromatic/heterocyclic sulfonamides incorporating phenacetyl, pyridylacetyl and thienylacetyl tails act as potent inhibitors of human mitochondrial isoforms VA and VB. Bioorg Med Chem. 2009;17:4894–9. https://doi.org/10.1016/j.bmc.2009.06.006.

Article  PubMed  CAS  Google Scholar 

Maresca A, Supuran CT. (R)-/(S)-10-camphorsulfonyl-substituted aromatic/heterocyclic sulfonamides selectively inhibit mitochondrial over cytosolic carbonic anhydrases. Bioorg Med Chem Lett. 2011;21:1334–7. https://doi.org/10.1016/j.bmcl.2011.01.050.

Article  PubMed  CAS  Google Scholar 

Vaškevičienė I, Paketurytė V, Zubrienė A, Kantminienė K, Mickevičius V, Matulis D. N-Sulfamoylphenyl-and N-sulfamoylphenyl-N-thiazolyl-β-alanines and their derivatives as inhibitors of human carbonic anhydrases. Bioorg Chem. 2017;75:16–29. https://doi.org/10.1016/j.bioorg.2017.08.017.

Article  PubMed  CAS  Google Scholar 

Čapkauskaitė E, Zakšauskas A, Ruibys V, Linkuvienė V, Paketurytė V, Gedgaudas M, Kairys V, Matulis D. Benzimidazole design, synthesis, and docking to build selective carbonic anhydrase VA inhibitors. Bioorg Med Chem. 2018;26:675–87. https://doi.org/10.1016/j.bmc.2017.12.035.

Article  PubMed  CAS  Google Scholar 

Urbelytė L, Bagdonas M, Grybaitė B, Vaickelionienė R, Mickevičiūtė A, Michailovienė V, Matulis D, Mickevičius V, Zubrienė A. Design and synthesis of hydrazone-bearing benzenesulfonamides as carbonic anhydrase VB inhibitors. ChemistrySelect. 2021;6:13506–13. https://doi.org/10.1002/slct.202103636.

Article  CAS  Google Scholar 

Poli G, Bozdag M, Berrino E, Angeli A, Tuccinardi T, Carta F, Supuran CT. N-aryl-N′-ureido-O-sulfamates as potent and selective inhibitors of hCA VB over hCA VA: deciphering the binding mode of new potential agents in mitochondrial dysfunctions. Bioorg Chem. 2020;100: 103896. https://doi.org/10.1016/j.bioorg.2020.103896.

Article  PubMed  CAS  Google Scholar 

Singh S, Sup

Comments (0)

No login
gif