Sarma S, Sockalingam S, Dash S. Obesity as a disease: trends in obesity rates and complications. Diabetes Obes Metab. 2021;23:3–16. https://doi.org/10.1111/dom.14290.
Article PubMed CAS Google Scholar
Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions—but do we have the will? Fertil Steril. 2017;107:833–9. https://doi.org/10.1016/j.fertnstert.2017.02.104.
Nguyen N, Champion JK, Ponce J, Quebbemann B, Patterson E, Pham B, et al. A review of unmet needs in obesity management. Obes Surg. 2012;22:956–66. https://doi.org/10.1007/s11695-012-0634-z.
Article PubMed CAS Google Scholar
Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2017;14:12–24. https://doi.org/10.1038/nrendo.2017.122.
Article PubMed CAS Google Scholar
Kakkar AK, Dahiya N. Drug treatment of obesity: current status and future prospects. J Intern Med. 2015;26:89–94. https://doi.org/10.1016/j.ejim.2015.01.005.
Singh AK, Singh R. Pharmacotherapy in obesity: a systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev Clin Pharmacol. 2019;13:53–64. https://doi.org/10.1080/17512433.2020.1698291.
Article PubMed CAS Google Scholar
Golden A. Current pharmacotherapies for obesity. J Am Assoc Nurse Pract. 2017;29:S43. https://doi.org/10.1002/2327-6924.12519.
Gadde KM, Pritham Raj Y. Pharmacotherapy of obesity: clinical trials to clinical practice. Curr Diab Rep. 2017;17:1. https://doi.org/10.1007/s11892-017-0859-2.
Gorain B, Choudhury H, Sengupta P, Verma RK, Pandey M. Extrapolation from clinical trial to practice: current pharmacotherapy on obesity. In: Kutty MK, Elengoe A, editors. Obesity and its impact on health. Springer; 2021. p. 125–48. https://doi.org/10.1007/978-981-33-6408-0_10.
Pulipati VP, Pannain S. Pharmacotherapy of obesity in complex diseases. Clin Obes. 2021;12:e12497. https://doi.org/10.1111/cob.12497.
Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov. 2019;14:1175–97. https://doi.org/10.1080/17460441.2019.1651289.
Article PubMed CAS Google Scholar
Baranauskienė L, Matulis D. Catalytic activity and inhibition of human carbonic anhydrases. In: Matulis D, editor. Carbonic anhydrase as drug target. Cham: Springer; 2019. p. 39–49. https://doi.org/10.1007/978-3-030-12780-0_3.
De Simone G, Supuran C. Antiobesity carbonic anhydrase inhibitors. Curr Top Med Chem. 2007;7:879–84. https://doi.org/10.2174/156802607780636762.
Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen S-A, Capasso C, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum —the η-carbonic anhydrases. Bioorg Med Chem Lett. 2014;24:4389–96. https://doi.org/10.1016/j.bmcl.2014.08.015.
Article PubMed CAS Google Scholar
Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci. 2016;113:9828–33. https://doi.org/10.1073/pnas.1603112113.
Article PubMed PubMed Central CAS Google Scholar
Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23:146–89. https://doi.org/10.1002/med.10025.
Article PubMed CAS Google Scholar
Bernardino RL, Dias TR, Moreira BP, Cunha M, Barros A, Oliveira E, Sousa M, Alves MG, Oliveira PF. Carbonic anhydrases are involved in mitochondrial biogenesis and control the production of lactate by human sertoli cells. FEBS J. 2019;286(7):1393–406.
Article PubMed CAS Google Scholar
Ismail IS. The role of carbonic anhydrase in hepatic glucose production. Curr Diab Rev. 2018;14:108–12. https://doi.org/10.2174/1573399812666161214122351.
Cecchi A, Taylor SD, Liu Y, Hill B, Vullo D, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: inhibition of the human isozymes I, II, VA, and IX with a library of substituted difluoromethanesulfonamides. Bioorg Med Chem Lett. 2005;15:5192–6. https://doi.org/10.1016/j.bmcl.2005.08.102.
Article PubMed CAS Google Scholar
Blackburn GM, Türkmen H. Synthesis of α-fluoro-and α, α-difluoro-benzenemethanesulfonamides: new inhibitors of carbonic anhydrase. Org Biomol Chem. 2005;3(2):225–6. https://doi.org/10.1039/B417327A.
Article PubMed CAS Google Scholar
Ho YT, Purohit A, Vicker N, Newman SP, Robinson JJ, Leese MP, Ganeshapillai D, Woo LW, Potter BV, Reed MJ. Inhibition of carbonic anhydrase II by steroidal and non-steroidal sulphamates. Biochem Biophys Res Commun. 2003;305(4):909–14. https://doi.org/10.1016/S0006-291X(03)00865-9.
Article PubMed CAS Google Scholar
Liu Y, Ahmed V, Hill B, Taylor SD. Synthesis of a non-hydrolyzable estrone sulfate analogue bearing the difluoromethanesulfonamide group and its evaluation as a steroid sulfatase inhibitor. Org Biomol Chem. 2005;3(18):3329–35. https://doi.org/10.1039/B508852F.
Article PubMed CAS Google Scholar
Poulsen SA, Wilkinson BL, Innocenti A, Vullo D, Supuran CT. Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett. 2008;18:4624–7. https://doi.org/10.1016/j.bmcl.2008.07.010.
Article PubMed CAS Google Scholar
Güzel Ö, Innocenti A, Scozzafava A, Salman A, Supuran CT. Carbonic anhydrase inhibitors. Aromatic/heterocyclic sulfonamides incorporating phenacetyl, pyridylacetyl and thienylacetyl tails act as potent inhibitors of human mitochondrial isoforms VA and VB. Bioorg Med Chem. 2009;17:4894–9. https://doi.org/10.1016/j.bmc.2009.06.006.
Article PubMed CAS Google Scholar
Maresca A, Supuran CT. (R)-/(S)-10-camphorsulfonyl-substituted aromatic/heterocyclic sulfonamides selectively inhibit mitochondrial over cytosolic carbonic anhydrases. Bioorg Med Chem Lett. 2011;21:1334–7. https://doi.org/10.1016/j.bmcl.2011.01.050.
Article PubMed CAS Google Scholar
Vaškevičienė I, Paketurytė V, Zubrienė A, Kantminienė K, Mickevičius V, Matulis D. N-Sulfamoylphenyl-and N-sulfamoylphenyl-N-thiazolyl-β-alanines and their derivatives as inhibitors of human carbonic anhydrases. Bioorg Chem. 2017;75:16–29. https://doi.org/10.1016/j.bioorg.2017.08.017.
Article PubMed CAS Google Scholar
Čapkauskaitė E, Zakšauskas A, Ruibys V, Linkuvienė V, Paketurytė V, Gedgaudas M, Kairys V, Matulis D. Benzimidazole design, synthesis, and docking to build selective carbonic anhydrase VA inhibitors. Bioorg Med Chem. 2018;26:675–87. https://doi.org/10.1016/j.bmc.2017.12.035.
Article PubMed CAS Google Scholar
Urbelytė L, Bagdonas M, Grybaitė B, Vaickelionienė R, Mickevičiūtė A, Michailovienė V, Matulis D, Mickevičius V, Zubrienė A. Design and synthesis of hydrazone-bearing benzenesulfonamides as carbonic anhydrase VB inhibitors. ChemistrySelect. 2021;6:13506–13. https://doi.org/10.1002/slct.202103636.
Poli G, Bozdag M, Berrino E, Angeli A, Tuccinardi T, Carta F, Supuran CT. N-aryl-N′-ureido-O-sulfamates as potent and selective inhibitors of hCA VB over hCA VA: deciphering the binding mode of new potential agents in mitochondrial dysfunctions. Bioorg Chem. 2020;100: 103896. https://doi.org/10.1016/j.bioorg.2020.103896.
Article PubMed CAS Google Scholar
Singh S, Sup
Comments (0)