Optimizing electrode placement for transcranial direct current stimulation in nonsuperficial cortical regions: a computational modeling study

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

Article  Google Scholar 

Liebetanz D, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation‐induced after‐effects of human motor cortex excitability. Brain. 2002;125(10):2238–47.

Article  Google Scholar 

Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9(2):197–208.

Article  Google Scholar 

Nissim NR, et al. Effects of transcranial direct current stimulation paired with cognitive training on functional connectivity of the working memory network in older adults. Front Aging Neurosci. 2019;11: 340.

Article  Google Scholar 

Ouellet J, et al. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): a randomized and sham-controlled exploratory study. J Psychiatr Res. 2015;69:27–34.

Article  Google Scholar 

Razza LB, et al. A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety. 2020;37(7):594–608.

Article  Google Scholar 

Yang D, et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: a randomized, double-blind, sham-controlled, and three-arm parallel multicenter study. Brain Stimul. 2020;13(1):109–16.

Article  MathSciNet  Google Scholar 

Beretta VS, et al. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson’s disease: a systematic review. J Neuroeng Rehabil. 2020;17(1):1–15.

Article  Google Scholar 

Chhatbar PY, et al. Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose–response relationship. Brain Stimul. 2016;9(1):16–26.

Article  Google Scholar 

Mahmoudi H, et al. Transcranial direct current stimulation: electrode montage in stroke. Disabil Rehabil. 2011;33(15–16):1383–8.

Article  Google Scholar 

Caulfield KA, George MS. Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Sci Rep. 2022;12(1):20116.

Article  Google Scholar 

Galletta EE, et al. Use of computational modeling to inform tDCS electrode montages for the promotion of language recovery in post-stroke aphasia. Brain Stimul. 2015;8(6):1108–15.

Article  Google Scholar 

Seibt O, et al. The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimul. 2015;8(3):590–602.

Article  Google Scholar 

Lee M, et al. What is the optimal anodal electrode position for inducing corticomotor excitability changes in transcranial direct current stimulation? Neurosci Lett. 2015;584:347–50.

Article  Google Scholar 

Xu P, et al. Medial prefrontal cortex in neurological diseases. Physiol Genom. 2019;51(9):432–42.

Article  Google Scholar 

Svoboda K, Li N. Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol. 2018;49:33–41.

Article  Google Scholar 

Hasz BM, Redish AD. Dorsomedial prefrontal cortex and hippocampus represent strategic context even while simultaneously changing representation throughout a task session. Neurobiol Learn Mem. 2020;171: 107215.

Article  Google Scholar 

Zhaoping L. A new framework for understanding vision from the perspective of the primary visual cortex. Curr Opin Neurobiol. 2019;58:1–10.

Article  Google Scholar 

Windhoff M, Opitz A, Thielscher A. Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapp. 2013;34(4):923–35.

Article  Google Scholar 

Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):1600–11.

Article  Google Scholar 

Angulo-Sherman IN, et al. Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power. J Neuroeng Rehabil. 2017;14(1):31.

Article  Google Scholar 

Junghofer M, et al. Noninvasive stimulation of the ventromedial prefrontal cortex enhances pleasant scene processing. Cereb Cortex. 2017;27(6):3449–56.

Article  Google Scholar 

Martin A, et al. Dissociable roles within the social brain for self–other processing: a HD-tDCS study. Cerebral Cortex. 2018;29:3642.

Article  Google Scholar 

Opitz A, et al. Determinants of the electric field during transcranial direct current stimulation. Neuroimage. 2015;109:140–50.

Article  Google Scholar 

Jung Y-J, Kim J-H, Im C-H. COMETS: a MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). Biomed Eng Lett. 2013;3(1):39–46.

Article  Google Scholar 

Lee C, et al. COMETS2: an advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. J Neurosci Methods. 2017;277:56–62.

Article  Google Scholar 

Madhavan S, Stinear JW. Focal and bidirectional modulation of lower limb motor cortex using anodal transcranial direct current stimulation. Brain Stimul. 2010;3(1):42–50.

Article  Google Scholar 

Nitsche MA, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

Article  Google Scholar 

Willis ML, et al. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition. Soc Cognit Affect Neurosci. 2015;10(12):1677–83.

Article  Google Scholar 

Antal A, et al. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Investig Ophthalmol Vis Sci. 2004;45(2):702–7.

Article  Google Scholar 

Bindman LJ, Lippold O, Redfearn J. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172(3):369.

Article  Google Scholar 

Koganemaru S, et al. Anodal transcranial patterned stimulation of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter human gait. PLoS ONE. 2018;13(12): e0208691.

Article  Google Scholar 

Martin AK, et al. Causal evidence for task-specific involvement of the dorsomedial prefrontal cortex in human social cognition. Soc Cognit Affect Neurosci. 2017;12(8):1209–18.

Article  Google Scholar 

Accornero N, et al. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007;178(2):261–6.

Article  Google Scholar 

Viganò A, et al. Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain. 2013;14(1): 23.

Article  Google Scholar 

Rawji V, et al. tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimul. 2018;11(2):289–98.

Article  Google Scholar 

Fox PT, et al. Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp. 2004;22(1):1–14.

Article  MathSciNet  Google Scholar 

Wagner T, et al. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–24.

Article  Google Scholar 

Suh HS, Lee WH, Kim T-S. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model. Phys Med Biol. 2012;57(21): 6961.

Article  Google Scholar 

Shahid SS, et al. The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. J Neural Eng. 2014;11(3): 036002.

Article  MathSciNet  Google Scholar 

Bai S, et al. A computational modelling study of transcranial direct current stimulation montages used in depression. Neuroimage. 2014;87:332–44.

Article  Google Scholar 

Laakso I, et al. Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 2015;8(5):906–13.

Article  Google Scholar 

Guler S, et al. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS). J Neural Eng. 2016;13(3): 036020.

Article  Google Scholar 

Fischer D, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. NeuroImage. 2017;157:34–44.

Article  Google Scholar 

Ruffini G, et al. Targeting brain networks with multichannel transcranial current stimulation (tCS). Curr Opin Biomed Eng. 2018;8:70–7.

Article  Google Scholar 

Loo CK, et al. International randomized-controlled trial of transcranial direct current stimulation in depression. Brain Stimul. 2018;11(1):125–33.

Article  Google Scholar 

Adenzato M, et al. Transcranial direct current stimulation enhances theory of mind in Parkinson’s disease patients with mild cognitive impairment: a randomized, double-blind, sham-controlled study. Translational Neurodegener. 2019;8(1):1.

Article  Google Scholar 

Mazzoleni S, et al. Effects of transcranial direct current stimulation (tDCS) combined with wrist robot-assisted rehabilitation on motor recovery in subacute stroke patients: a randomized controlled trial. IEEE Trans Neural Syst Rehabil Eng. 2019;27:1458.

Article  Google Scholar 

Li J, et al. Transcranial stimulation over the medial prefrontal cortex increases money illusion. J Econ Psychol. 2023;99: 102665.

Article  Google Scholar 

van Asseldonk EH, Boonstra TA. Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimul. 2016;9(2):182–90.

Article  Google Scholar 

Adams TG, et al. Transcranial direct current stimulation targeting the medial prefrontal cortex modulates functional connectivity and enhances safety learning in obsessive-compulsive disorder: results from two pilot studies. Depress Anxiety. 2022;39(1):37–48.

Article 

留言 (0)

沒有登入
gif