Design and validation of a low-cost photomodulator for in vivo photoactivation of a mGluR5 inhibitor

Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071. https://doi.org/10.1038/natrevmats.2016.71.

Article  Google Scholar 

Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148–56. https://doi.org/10.1016/j.addr.2016.02.006.

Article  Google Scholar 

Tietze R, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468(3):463–70. https://doi.org/10.1016/j.bbrc.2015.08.022.

Article  Google Scholar 

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.

Article  Google Scholar 

Hüll K, Morstein J, Trauner D. In Vivo Photopharmacology. Chem Rev. 2018;118(21):10710–47. https://doi.org/10.1021/acs.chemrev.8b00037.

Article  Google Scholar 

Pittolo S, et al. An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol. 2014;10(10):813–5. https://doi.org/10.1038/nchembio.1612.

Article  Google Scholar 

Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704–17. https://doi.org/10.1021/jacs.5b09974.

Article  Google Scholar 

Dcona MM, Sheldon JE, Mitra D, Hartman MCT. Light induced drug release from a folic acid-drug conjugate. Bioorg Med Chem Lett. 2017;27(3):466–9. https://doi.org/10.1016/j.bmcl.2016.12.036.

Article  Google Scholar 

Nani RR, Gorka AP, Nagaya T, Kobayashi H, Schnermann MJ. Near-IR light-mediated cleavage of antibody-drug conjugates using cyanine photocages. Angew Chem Int Ed. 2015;54(46):13635–8. https://doi.org/10.1002/anie.201507391.

Article  Google Scholar 

Izquierdo-Serra M, et al. Optical control of endogenous receptors and cellular excitability using targeted covalent photoswitches. Nat Commun. 2016;7(1):12221. https://doi.org/10.1038/ncomms12221.

Article  Google Scholar 

Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci. 2019;20(9):514–32. https://doi.org/10.1038/s41583-019-0197-2.

Article  Google Scholar 

Font J, et al. “Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. Elife. 2017;6:e23545. https://doi.org/10.7554/eLife.23545.

Article  Google Scholar 

Anikeeva P, et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci. 2012;15(1):163–70. https://doi.org/10.1038/nn.2992.

Article  Google Scholar 

Wang J, et al. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng. 2012;9(1): 016001. https://doi.org/10.1088/1741-2560/9/1/016001.

Article  Google Scholar 

Kim T, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 2013;340(6129):211–6. https://doi.org/10.1126/science.1232437.

Article  Google Scholar 

Jeong J-W, et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell. 2015;162(3):662–74. https://doi.org/10.1016/j.cell.2015.06.058.

Article  MathSciNet  Google Scholar 

Lee ST, Williams PA, Braine CE, Lin D-T, John SWM, Irazoqui PP. A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator. IEEE Trans Neural Syst Rehabil Eng. 2015;23(4):655–64. https://doi.org/10.1109/TNSRE.2015.2391282.

Article  Google Scholar 

M. Schwaerzle, P. Ringwald, O. Paul, and P. Ruther, (2017) “First dual-color optrode with bare laser diode chips directly butt-coupled to hybrid-polymer waveguides,” in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA: IEEE, pp. 526–529. doi: https://doi.org/10.1109/MEMSYS.2017.7863459.

Shin G, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron. 2017;93(3):509-521.e3. https://doi.org/10.1016/j.neuron.2016.12.031.

Article  MathSciNet  Google Scholar 

Qazi R, et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat Biomed Eng. 2019;3(8):655–69. https://doi.org/10.1038/s41551-019-0432-1.

Article  Google Scholar 

Zhang Y, et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci USA. 2019;116(43):21427–37. https://doi.org/10.1073/pnas.1909850116.

Article  Google Scholar 

Zhang Y, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv. 2019;5(7):eaaw5296. https://doi.org/10.1126/sciadv.aaw5296.

Article  Google Scholar 

Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Sydney: Academic Pr; 1982.

Google Scholar 

Gong N, Huang Q, Chen Y, Xu M, Ma S, Wang Y-X. Pain assessment using the rat and mouse formalin tests. Bio-Protoc. 2014. https://doi.org/10.21769/BioProtoc.1288.

Article  Google Scholar 

Bhamra H, Tsai J-W, Huang Y-W, Yuan Q, Shah JV, Irazoqui P. A Subcubic millimeter wireless implantable intraocular pressure monitor microsystem. IEEE Trans Biomed Circuits Syst. 2017;11(6):1204–15. https://doi.org/10.1109/TBCAS.2017.2755596.

Article  Google Scholar 

Pederson DJ, et al. The bionode: a closed-loop neuromodulation implant. ACM Trans Embed Comput Syst. 2019;18(1):1–20. https://doi.org/10.1145/3301310.

Article  Google Scholar 

Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-loop vagus nerve stimulation for the treatment of cardiovascular diseases: state of the art and future directions. Front Cardiovasc Med. 2022;9: 866957. https://doi.org/10.3389/fcvm.2022.866957.

Article  Google Scholar 

Newman JP, Fong M, Millard DC, Whitmire CJ, Stanley GB, Potter SM. Optogenetic feedback control of neural activity. Elife. 2015;4:e07192. https://doi.org/10.7554/eLife.07192.

Article  Google Scholar 

A. Sinicropi, “BIOMIMETIC PHOTOSWITCHES,” La Chimica & L’Industria, p. 8, Apr. 2010.

Babii O, et al. “Peptide drugs for photopharmacology: how much of a safety advantage can be gained by photocontrol? Future Drug Discovery. 2020;2(1):FDD28. https://doi.org/10.4155/fdd-2019-0033.

Article  Google Scholar 

Sansalone L, Bratsch-Prince J, Tang S, Captain B, Mott DD, Raymo FM. Photopotentiation of the GABA A receptor with caged diazepam. Proc Natl Acad Sci USA. 2019;116(42):21176–84. https://doi.org/10.1073/pnas.1902383116.

Article  Google Scholar 

Trads JB, et al. Sign inversion in photopharmacology: incorporation of cyclic azobenzenes in photoswitchable potassium channel blockers and openers. Angew Chem Int Ed. 2019;58(43):15421–8. https://doi.org/10.1002/anie.201905790.

Article  Google Scholar 

留言 (0)

沒有登入
gif