METTL3-mediated m6A methylation regulates ovarian cancer progression by recruiting myeloid-derived suppressor cells

Gaona-Luviano P, Adriana L, Medina-Gaona, Magaña-Pérez K. Epidemiology of Ovarian cancer. Chin Clin Oncol. 2020. https://doi.org/10.21037/cco-20-34.

Article  PubMed  Google Scholar 

Suszczyk D, Skiba W, Jakubowicz-Gil J, Kotarski J, Wertel I. The role of myeloid-derived suppressor cells (MDSCs) in the development and/or progression of endometriosis-state of the art. Cells. 2021. https://doi.org/10.3390/cells10030677.

Article  PubMed  PubMed Central  Google Scholar 

Khan ANH, Kolomeyevskaya N, Singel KL, Grimm MJ, Moysich KB, Daudi S, Grzankowski KS, Lele S, Ylagan L, Webster GA, et al. Targeting myeloid cells in the Tumor microenvironment enhances vaccine efficacy in murine epithelial Ovarian cancer. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.3597.

Article  PubMed  PubMed Central  Google Scholar 

Rei M, Gonca̧lves-Sousa N, Lanca̧ T, Thompson RG, Mensurado S, Balkwill FR, Kulbe H, Pennington DJ, Silva-Santos B. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote Ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci U S A. 2014. https://doi.org/10.1073/pnas.1403424111.

Article  PubMed  PubMed Central  Google Scholar 

Bou Ghosn EE, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM, Bortoluci KR, Almeida SR, Herzenberg LA, Herzenberg LA. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci U S A. 2010. https://doi.org/10.1073/pnas.0915000107.

Article  Google Scholar 

Worzfeld T, von Strandmann EP, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The unique molecular and cellular microenvironment of Ovarian cancer. Front Oncol. 2017. https://doi.org/10.3389/fonc.2017.00024.

Article  PubMed  PubMed Central  Google Scholar 

Lewis CE, Pollard JW. Distinct role of macrophages in different Tumor microenvironments. Cancer Res. 2006. https://doi.org/10.1158/0008-5472.CAN-05-4005.

Article  PubMed  Google Scholar 

Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G, et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic Metastasis of Ovarian cancer. J Clin Invest. 2016. https://doi.org/10.1172/JCI87252.

Article  PubMed  PubMed Central  Google Scholar 

Condeelis J, Pollard JW, Macrophages. Obligate partners for Tumor cell migration, invasion, and Metastasis. Cell. 2006. https://doi.org/10.1016/j.cell.2006.01.007.

Article  PubMed  Google Scholar 

Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, Sieweke MH, Moestrup SK, Auphan-Anezin N, Lawrence T. Tissue-resident macrophages in omentum promote metastatic spread of Ovarian cancer. J Exp Med. 2020. https://doi.org/10.1084/jem.20191869.

Article  PubMed  PubMed Central  Google Scholar 

Lee WJ, Ko SY, Mohamed MS, Kenny HA, Lengyel E, Naora H. Neutrophils facilitate Ovarian cancer premetastatic niche formation in the omentum. J Exp Med. 2019. https://doi.org/10.1084/jem.20181170.

Article  PubMed  PubMed Central  Google Scholar 

Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, Liu Y, Zhou X, Zhang T, Gong C, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of Ovarian cancer. J Exp Med. 2019. https://doi.org/10.1084/jem.20180765.

Article  PubMed  PubMed Central  Google Scholar 

Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in Gene expression regulation. Cell. 2017. https://doi.org/10.1016/j.cell.2017.05.045.

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018. https://doi.org/10.1038/s41422-018-0040-8.

Article  PubMed  PubMed Central  Google Scholar 

Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, Chen YS, Zhang XX, Wang CX, Jiang LY, et al. Mettl3-mediated m 6 a regulates spermatogonial differentiation and meiosis initiation. Cell Res. 2017. https://doi.org/10.1038/cr.2017.100.

Article  PubMed  PubMed Central  Google Scholar 

Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, Su Y, Kim NS, Zhu Y, Zheng L, et al. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell. 2017. https://doi.org/10.1016/j.cell.2017.09.003.

Article  PubMed  PubMed Central  Google Scholar 

Wang CX, Cui GS, Liu X, Xu K, Wang M, Zhang XX, Jiang LY, Li A, Yang Y, Lai WY, et al. METTL3-mediated m 6 A modification is required for cerebellar development. PLoS Biol. 2018. https://doi.org/10.1371/journal.pbio.2004880.

Article  PubMed  PubMed Central  Google Scholar 

Chen J, Zhang YC, Huang C, Shen H, Sun B, Cheng X, Zhang YJ, Yang YG, Shu Q, Yang Y, et al. m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteom Bioinforma. 2019. https://doi.org/10.1016/j.gpb.2018.12.007.

Article  Google Scholar 

Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al. m6A RNA methylation regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem cells. Cell Rep. 2017. https://doi.org/10.1016/j.celrep.2017.02.059.

Article  PubMed  PubMed Central  Google Scholar 

Yao QJ, Sang L, Lin M, Yin X, Dong W, Gong Y, Zhou BO. Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 2018. https://doi.org/10.1038/s41422-018-0062-2.

Article  PubMed  PubMed Central  Google Scholar 

Luo H, Liu W, Zhang Y, Yang Y, Jiang X, Wu S, Shao L. METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Res Ther. 2021. https://doi.org/10.1186/s13287-021-02223-x.

Article  PubMed  PubMed Central  Google Scholar 

Lee H, Bao S, Qian Y, Geula S, Leslie J, Zhang C, Hanna JH, Ding L. Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nat Cell Biol. 2019. https://doi.org/10.1038/s41556-019-0318-1.

Article  PubMed  PubMed Central  Google Scholar 

Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, et al. M 6 A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017. https://doi.org/10.1038/nature23450.

Article  PubMed  PubMed Central  Google Scholar 

Yao Y, Yang Y, Guo W, Xu L, You M, Zhang YC, Sun Z, Cui X, Yu G, Qi Z, et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-21594-6.

Article  PubMed  PubMed Central  Google Scholar 

Zheng Z, Zhang L, Cui XL, Yu X, Hsu PJ, Lyu R, Tan H, Mandal M, Zhang M, Sun HL, et al. Control of early B cell development by the RNA N6-Methyladenosine methylation. Cell Rep. 2020. https://doi.org/10.1016/j.celrep.2020.107819.

Article  PubMed  PubMed Central  Google Scholar 

Wei J, Yin Y, Zhou J, Chen H, Peng J, Yang J, Tang Y. METTL3 potentiates resistance to cisplatin through m6A modification of TFAP2C in seminoma. J Cell Mol Med. 2020. https://doi.org/10.1111/jcmm.15738.

Article  PubMed  PubMed Central  Google Scholar 

Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, Yuan J, Rana TM. M 6 a RNA methyltransferases METTL3/14 regulate immune responses to anti-PD‐1 therapy. EMBO J. 2020. https://doi.org/10.15252/embj.2020104514.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, et al. FTO plays an oncogenic role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA demethylase. Cancer Cell. 2017. https://doi.org/10.1016/j.ccell.2016.11.017.

Article  PubMed  PubMed Central  Google Scholar 

Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al. m6A demethylase ALKBH5 maintains tumorigenicity of Glioblastoma Stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017. https://doi.org/10.1016/j.ccell.2017.02.013.

Article  PubMed  PubMed Central  Google Scholar 

Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP, Sun SH. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017. https://doi.org/10.1002/hep.28885.

Article  PubMed  Google Scholar 

Cheng M, Sheng L, Gao Q, Xiong Q, Zhang H, Wu M, Liang Y, Zhu F, Zhang Y, Zhang X, et al. The m 6 a methyltransferase METTL3 promotes Bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene. 2019. https://doi.org/10.1038/s41388-019-0683-z.

Article  PubMed  PubMed Central  Google Scholar 

Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, Mackay M, et al. The N 6 -methyladenosine (m 6 A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and Leukemia cells. Nat Med. 2017. https://doi.org/10.1038/nm.4416.

Article  PubMed  PubMed Central  Google Scholar 

Ramakrishnan M, Mathur SR, Mukhopadhyay A. Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma. Cancer Res. 2013. https://doi.org/10.1158/0008-5472.CAN-13-0896.

Article  PubMed 

留言 (0)

沒有登入
gif