Transcriptome-wide association studies associated with Crohn’s disease: challenges and perspectives

Kraft P, Zeggini E, Ioannidis JP. Replication in genome-wide association studies. Stat Sci. 2009;24(4):561–73. https://doi.org/10.1214/09-STS290.

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, Groza T, Gunes O, Hall P, Hayhurst J, et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51(D1):D977–85. https://doi.org/10.1093/nar/gkac1010.

Article  CAS  PubMed  Google Scholar 

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. https://doi.org/10.1126/science.1222794.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet. 2017;389(10080):1741–55. https://doi.org/10.1016/S0140-6736(16)31711-1.

Article  PubMed  Google Scholar 

Satsangi J, Silverberg MS, Vermeire S, Colombel JF. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55(6):749–53. https://doi.org/10.1136/gut.2005.082909.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. https://doi.org/10.1038/nature11582.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. https://doi.org/10.1038/ng.3359.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kakuta Y, Kawai Y, Naito T, Hirano A, Umeno J, Fuyuno Y, Liu Z, Li D, Nakano T, Izumiyama Y, et al. A genome-wide association study identifying RAP1A as a novel susceptibility gene for Crohn’s disease in Japanese individuals. J Crohns Colitis. 2019;13(5):648–58. https://doi.org/10.1093/ecco-jcc/jjy197.

Article  PubMed  Google Scholar 

Kakuta Y, Ichikawa R, Fuyuno Y, Hirano A, Umeno J, Torisu T, Watanabe K, Asakura A, Nakano T, Izumiyama Y, et al. An integrated genomic and transcriptomic analysis reveals candidates of susceptibility genes for Crohn’s disease in japanese populations. Sci Rep. 2020;10(1):10236. https://doi.org/10.1038/s41598-020-66951-5.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Jung S, Liu W, Baek J, Moon JW, Ye BD, Lee HS, Park SH, Yang SK, Han B, Liu J, et al. Expression quantitative trait Loci (eQTL) mapping in korean patients with Crohn’s disease and identification of potential causal genes through integration with disease associations. Front Genet. 2020;11:486. https://doi.org/10.3389/fgene.2020.00486.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gettler K, Giri M, Kenigsberg E, Martin J, Chuang LS, Hsu NY, Denson LA, Hyams JS, Griffiths A, Noe JD, et al. Prioritizing Crohn’s disease genes by integrating association signals with gene expression implicates monocyte subsets. Genes Immun. 2019;20(7):577–88. https://doi.org/10.1038/s41435-019-0059-y.

Article  PubMed  PubMed Central  Google Scholar 

Dai Y, Pei G, Zhao Z, Jia P. A Convergent study of genetic variants associated with Crohn’s disease: evidence from gwas, gene expression, methylation, eQTL and TWAS. Front Genet. 2019;10:318. https://doi.org/10.3389/fgene.2019.00318.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uellendahl-Werth F, Maj C, Borisov O, Juzenas S, Wacker EM, Jorgensen IF, Steiert TA, Bej S, Krawitz P, Hoffmann P, et al. Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease. Commun Biol. 2022;5(1):80. https://doi.org/10.1038/s42003-022-03031-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng B, Liang X, Wen Y, Li P, Zhang L, Ma M, Cheng S, Du Y, Liu L, Ding M, et al. Integrative analysis of transcriptome-wide association study data and messenger RNA expression profiles identified candidate genes and pathways for inflammatory bowel disease. J Cell Biochem. 2019;120(9):14831–7. https://doi.org/10.1002/jcb.28744.

Article  CAS  PubMed  Google Scholar 

Diez-Obrero V, Moratalla-Navarro F, Ibanez-Sanz G, Guardiola J, Rodriguez-Moranta F, Obon-Santacana M, Diez-Villanueva A, Dampier CH, Devall M, Carreras-Torres R, et al. Transcriptome-wide association study for inflammatory bowel disease reveals novel candidate susceptibility genes in specific colon subsites and tissue categories. J Crohns Colitis. 2022;16(2):275–85. https://doi.org/10.1093/ecco-jcc/jjab131.

Article  PubMed  Google Scholar 

Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R, Coenen MJ, Vonk MC, Voskuyl AE, Schuerwegh AJ, et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet. 2010;42(5):426–9. https://doi.org/10.1038/ng.565.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD, Kenny EE. Human demographic history impacts genetic risk prediction across diverse populations. Am J Hum Genet. 2017;100(4):635–49. https://doi.org/10.1016/j.ajhg.2017.03.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlson CS, Matise TC, North KE, Haiman CA, Fesinmeyer MD, Buyske S, Schumacher FR, Peters U, Franceschini N, Ritchie MD, et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 2013;11(9): e1001661. https://doi.org/10.1371/journal.pbio.1001661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Liu R, Gao H, Jung S, Gao X, Sun R, Liu X, Kim Y, Lee HS, Kawai Y, et al. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat Genet. 2023;55(5):796–806. https://doi.org/10.1038/s41588-023-01384-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Need AC, Goldstein DB. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 2009;25(11):489–94. https://doi.org/10.1016/j.tig.2009.09.012.

Article  CAS  PubMed  Google Scholar 

Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. Nature. 2011;475(7355):163–5. https://doi.org/10.1038/475163a.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538(7624):161–4. https://doi.org/10.1038/538161a.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Manning A, Highland HM, Gasser J, Sim X, Tukiainen T, Fontanillas P, Grarup N, Rivas MA, Mahajan A, Locke AE, et al. A low-frequency inactivating AKT2 variant enriched in the finnish population is associated with fasting insulin levels and type 2 diabetes risk. Diabetes. 2017;66(7):2019–32. https://doi.org/10.2337/db16-1329.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Estrada K, Aukrust I, Bjørkhaug L, Burtt NP, Mercader JM, García-Ortiz H, Huerta-Chagoya A, Moreno-Macías H, Walford G, Flannick J, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311(22):2305–14. https://doi.org/10.1001/jama.2014.6511.

Article  CAS  PubMed  Google Scholar 

Ventham NT, Kennedy NA, Adams AT, Kalla R, Heath S, O’Leary KR, Drummond H, Wilson DC, Gut IG, Nimmo ER, et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat Commun. 2016;7:13507. https://doi.org/10.1038/ncomms13507.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4): e1000888. https://doi.org/10.1371/journal.pgen.1000888.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo A, Marigorta UM, Arafat D, Chan LHK, Ponder L, Jang SR, Prince J, Kugathasan S, Prahalad S, Gibson G. Disease-specific regulation of gene expression in a comparative analysis of juvenile idiopathic arthritis and inflammatory bowel disease. Genome Med. 2018;10(1):48. https://doi.org/10.1186/s13073-018-0558-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. https://doi.org/10.1038/nbt.1685.

Article  CAS  PubMed  Google Scholar 

Yoo T, Joo SK, Kim HJ, Kim HY, Sim H, Lee J, Kim HH, Jung S, Lee Y, Jamialahmadi O, et al. Disease-specific eQTL screening reveals an anti-fibrotic effect of AGXT2 in non-alcoholic fatty liver disease. J Hepatol. 2021;75(3):514–23.

Comments (0)

No login
gif