Neural Degeneration in Normal-Aging Human Cochleas: Machine-Learning Counts and 3D Mapping in Archival Sections

Otte J, Schunknecht HF, Kerr AG (1978) Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 88(8 Pt 1):1231–1246

CAS  PubMed  Google Scholar 

Makary CA et al (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12(6):711–717

Article  PubMed  PubMed Central  Google Scholar 

Ishiyama G et al (2011) Spiral and vestibular ganglion estimates in archival temporal bones obtained by design based stereology and Abercrombie methods. J Neurosci Methods 196(1):76–80

Article  PubMed  Google Scholar 

Schettino AE, Lauer AM (2013) The efficiency of design-based stereology in estimating spiral ganglion populations in mice. Hear Res 304:153–158

Article  PubMed  PubMed Central  Google Scholar 

Wu PZ et al (2020) Age-related hearing loss is dominated by damage to inner ear sensory cells, not the cellular battery that powers them. J Neurosci 40(33):6357–6366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liberman MC, Kiang NY (1978) Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl 358:1–63

Johnsson LG, Hawkins Jr JE (1976) Degeneration patterns in human ears exposed to noise. Ann Otol Rhinol Laryngol 85(6 PT. 1):725–39

Chen MA et al (2006) Presbycusic neuritic degeneration within the osseous spiral lamina. Otol Neurotol 27(3):316–322

Article  PubMed  Google Scholar 

Wu PZ et al (2018) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407:8–20

Article  PubMed  Google Scholar 

Resnik J, Polley DB (2021) Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron 109(6):984–996.e4

Suzuki J, Corfas G, Liberman MC (2016) Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep 6:24907

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan AM et al (2005) Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope 115(4):672–677

Article  PubMed  Google Scholar 

Merchant SN et al (2008) Human temporal bone consortium for research resource enhancement. J Assoc Res Otolaryngol 9(1):1–4

Article  PubMed  PubMed Central  Google Scholar 

Merchant SN, Nadol JB (2010) Schuknecht’s pathology of the ear, 3rd edition Shelton. People’s Medical Publishing House - USA, CT, p 942

Google Scholar 

Greenwood DD (1990) A cochlear frequency-position function for several species–29 years later. J Acoust Soc Am 87(6):2592–2605

Article  CAS  PubMed  Google Scholar 

Schuknecht HF (1974) Pathology of the Ear Cambrideg. Harvard Universtiy Press, MA, p 574

Google Scholar 

Stakhovskaya O et al (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 8(2):220–233

Article  PubMed  PubMed Central  Google Scholar 

Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223(2):163–176

Article  CAS  PubMed  Google Scholar 

Spoendlin H, Schrott A (1988) The spiral ganglion and the innervation of the human organ of Corti. Acta Otolaryngol 105(5–6):403–410

Article  CAS  PubMed  Google Scholar 

Liu W et al (2015) The pre- and post-somatic segments of the human type I spiral ganglion neurons–structural and functional considerations related to cochlear implantation. Neuroscience 284:470–482

Article  CAS  PubMed  Google Scholar 

Davis H et al (1950) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol Suppl 88:1–56

CAS  PubMed  Google Scholar 

Wu PZ et al (2021) Primary neural degeneration in noise-exposed human cochleas: correlations with outer hair cell loss and word-discrimination scores. J Neurosci 41(20):4439–4447

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu PZ et al (2019) Assessing fractional hair cell survival in archival human temporal bones. Laryngoscope 130(2):487–495

Hinojosa R, Marion M (1983) Histopathology of profound sensorineural deafness. Ann N Y Acad Sci 405:459–484

Article  CAS  PubMed  Google Scholar 

Nadol JB Jr (1988) Quantification of human spiral ganglion cells by serial section reconstruction and segmental density estimates. Am J Otolaryngol 9(2):47–51

Article  PubMed  Google Scholar 

Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

Article  CAS  PubMed  Google Scholar 

Stamataki S et al (2006) Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hear Res 221(1–2):104–118

Article  PubMed  Google Scholar 

Leake PA et al (2011) Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. J Comp Neurol 519(8):1526–1545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guthrie OW (2017) Noise stress induces an epidermal growth factor receptor/xeroderma pigmentosum-a response in the auditory nerve. J Histochem Cytochem 65(3):173–184

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur C et al (2020) Age-related changes in the number of cresyl-violet-stained, parvalbumin and NMDAR 2B expressing neurons in the human spiral ganglion. Hear Res 388:107883

Article  PubMed  Google Scholar 

Tang Y, Lopez I, Ishiyama A (2002) Application of unbiased stereology on archival human temporal bone. Laryngoscope 112(3):526–533

Article  PubMed  Google Scholar 

Kiang NY et al (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217(4555):175–177

Article  CAS  PubMed  Google Scholar 

Nadol Jr JB, Burgess BJ, Reisser C (1990) Morphometric analysis of normal human spiral ganglion cells. Ann Otol Rhinol Laryngol 99(5 Pt 1):340–8

Kiang NY et al (1984) Afferent innervation of the mammalian cochlea. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, pp 143–161

Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 43(1):25–38

Article  CAS  PubMed  Google Scholar 

Nadol JB Jr et al (2001) Histopathology of cochlear implants in humans. Ann Otol Rhinol Laryngol 110(9):883–891

Article  PubMed  Google Scholar 

Khan AM et al (2005) Effect of cochlear implantation on residual spiral ganglion cell count as determined by comparison with the contralateral nonimplanted inner ear in humans. Ann Otol Rhinol Laryngol 114(5):381–385

Article  PubMed  Google Scholar 

Fayad JN, Linthicum FH Jr (2006) Multichannel cochlear implants: relation of histopathology to performance. Laryngoscope 116(8):1310–1320

Article  PubMed  Google Scholar 

Ishai R et al (2017) The pattern and degree of capsular fibrous sheaths surrounding cochlear electrode arrays. Hear Res 348:44–53

Article  PubMed  PubMed Central  Google Scholar 

Jahn KN, Arenberg JG (2020) Identifying cochlear implant channels with relatively poor electrode-neuron interfaces using the electrically evoked compound action potential. Ear Hear 41(4):961–973

Article  PubMed  PubMed Central  Google Scholar 

Hutson KA et al (2021) Light sheet microscopy of the gerbil cochlea. J Comp Neurol 529(4):757–785

Article  CAS  PubMed  Google Scholar 

Suzuka Y, Schuknecht HF (1988) Retrograde cochlear neuronal degeneration in human subjects. Acta Otolaryngol Suppl 450:1–20

Article  CAS  PubMed  Google Scholar 

Sugawara M, Corfas G, Liberman MC (2005) Influence of supporting cells on neuronal degeneration after hair cell loss. J Assoc Res Otolaryngol 6(2):136–147

Article  PubMed  PubMed Central  Google Scholar 

Miller JM et al (1997) Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int J Dev Neurosci 15(4–5):631–643

Article  CAS  PubMed  Google Scholar 

Stankovic K et al (2004) Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 24(40):8651–8661

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif