Experimental Study of Needle Insertion into Gerbil Tympanic Membrane

Von Unge M, Decraemer WF, Bagger-Sjöbäck D, Van Den Berghe D (1997) Tympanic membrane changes in experimental purulent otitis media. Hear Res 106:123–136. https://doi.org/10.1016/S0378-5955(97)00008-7

Article  Google Scholar 

Guan X, Jiang S, Seale TW, Hitt BM, Gan RZ (2015) Morphological changes in the tympanic membrane associated with Haemophilus influenzae-induced acute otitis media in the chinchilla. Int J Pediatr Otorhinolaryngol 79:1462–1471. https://doi.org/10.1016/j.ijporl.2015.06.030

Article  PubMed  Google Scholar 

Ebrahimian A, Mohammadi H, Maftoon N (2024) Material characterization of human middle ear using machine-learning-based surrogate models. J Mech Behav Biomed Mater 153:106478. https://doi.org/10.1016/j.jmbbm.2024.106478

Article  PubMed  Google Scholar 

Devare J, Gubbels S, Raphael Y (2018) Outlook and future of inner ear therapy. Hear Res 368:127–135. https://doi.org/10.1016/j.heares.2018.05.009

Article  PubMed  PubMed Central  Google Scholar 

Magdy M, Elmowafy E, Elassal M, Ishak RAH (2022) Localized drug delivery to the middle ear: recent advances and perspectives for the treatment of middle and inner ear diseases. J Drug Deliv Sci Technol 69:103149. https://doi.org/10.1016/j.jddst.2022.103149

Article  CAS  Google Scholar 

Heidemann CH, Lous J, Berg J, Christensen JJ, Håkonsen SJ, Jakobsen M et al (2016) Danish guidelines on management of otitis media in preschool children. Int J Pediatr Otorhinolaryngol 87:154–163. https://doi.org/10.1016/j.ijporl.2016.06.003

Article  CAS  PubMed  Google Scholar 

Mandel EM, Rockette HE, Bluestone CD, Paradise JL, Nozza RJ (1989) Myringotomy with and without tympanostomy tubes for chronic otitis media with effusion. Arch Otolaryngol - Head Neck Surg 115:1217–1224. https://doi.org/10.1001/archotol.1989.01860340071020

Article  CAS  PubMed  Google Scholar 

Rosenfeld RM, Tunkel DE, Schwartz SR et al (2022) Clinical practice guideline: tympanostomy tubes in children (update). Otolaryngol Neck Surg 166. https://doi.org/10.1177/01945998211065662

Ebrahimian A, Mohammadi H, Rosowski JJ, Cheng JT, Maftoon N (2023) Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling. Sci Rep 13:7329. https://doi.org/10.1038/s41598-023-34018-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebrahimian A, Mohammadi H, Maftoon N (2023) Relative importance and interactions of parameters of finite-element models of human middle ear. J Acoust Soc Am 154:619–634. https://doi.org/10.1121/10.0020273

Article  PubMed  Google Scholar 

Békésy GV (1949) The structure of the middle ear and the hearing of one’s own voice by bone conduction. J Acoust Soc Am 21:217–232. https://doi.org/10.1121/1.1906501

Article  Google Scholar 

Decraemer WF, Maes MA, Vanhuyse VJ (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13:463–468. https://doi.org/10.1016/0021-9290(80)90338-3

Article  CAS  PubMed  Google Scholar 

Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38:1807–1815. https://doi.org/10.1016/j.jbiomech.2004.08.022

Article  PubMed  Google Scholar 

Luo H, Lu H, Dai C, Gan RZ (2009) A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates. Int J Exp Comput Biomech 1:1. https://doi.org/10.1504/IJECB.2009.022856

Article  Google Scholar 

Hesabgar SM, Marshall H, Agrawal SK, Samani A, Ladak HM (2010) Measuring the quasi-static Young’s modulus of the eardrum using an indentation technique. Hear Res 263:168–176. https://doi.org/10.1016/j.heares.2010.02.005

Article  PubMed  Google Scholar 

Rohani SA, Ghomashchi S, Agrawal SK, Ladak HM (2017) Estimation of the Young’s modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis. Hear Res 345:69–78. https://doi.org/10.1016/j.heares.2017.01.002

Article  PubMed  Google Scholar 

Caminos L, Garcia-Manrique J, Lima-Rodriguez A, Gonzalez-Herrera A (2018) Analysis of the mechanical properties of the human tympanic membrane and its influence on the dynamic behaviour of the human hearing system. Appl Bionics Biomech 2018:1–12. https://doi.org/10.1155/2018/1736957

Article  Google Scholar 

Decraemer WF, Maes MA, Vanhuyse VJ, Vanpeperstraete P (1980) A non-linear viscoelastic constitutive equation for soft biological tissues, based upon a structural model. J Biomech 13:559–564. https://doi.org/10.1016/0021-9290(80)90056-1

Article  CAS  PubMed  Google Scholar 

Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35:305–314. https://doi.org/10.1007/s10439-006-9227-0

Article  PubMed  Google Scholar 

Wang X, Cheng T, Gan RZ (2007) Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am 122:906–917. https://doi.org/10.1121/1.2749417

Article  PubMed  Google Scholar 

Huang G, Daphalapurkar NP, Gan RZ, Lu H (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130:014501. https://doi.org/10.1115/1.2838034

Article  PubMed  Google Scholar 

Zhang X, Gan RZ (2010) Dynamic properties of human tympanic membrane–experimental measurement and modelling analysis. Int J Exp Comput Biomech 1:252. https://doi.org/10.1504/IJECB.2010.035260

Article  Google Scholar 

Motallebzadeh H, Charlebois M, Funnell WRJ (2013) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134:4427–4434. https://doi.org/10.1121/1.4828831

Article  PubMed  Google Scholar 

Liang J, Luo H, Yokell Z, Nakmali DU, Gan RZ, Lu H (2016) Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection. Hear Res 339:1–11. https://doi.org/10.1016/j.heares.2016.05.012

Article  PubMed  Google Scholar 

Luo H, Jiang S, Nakmali DU, Gan RZ, Lu H (2016) Mechanical properties of a human eardrum at high strain rates after exposure to blast waves. J Dyn Behav Mater 2:59–73. https://doi.org/10.1007/s40870-015-0041-3

Article  Google Scholar 

Liang J, Smith KD, Gan RZ, Lu H (2019) The effect of blast overpressure on the mechanical properties of the human tympanic membrane. J Mech Behav Biomed Mater 100:103368. https://doi.org/10.1016/j.jmbbm.2019.07.026

Article  CAS  PubMed  Google Scholar 

Gan RZ, Leckness K, Nakmali D, Ji XD (2018) Biomechanical measurement and modeling of human eardrum injury in relation to blast wave direction. Mil Med 183:245–251. https://doi.org/10.1093/milmed/usx149

Article  PubMed  Google Scholar 

Jiang S, Smith K, Gan RZ (2019) Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Hear Res 378:43–52. https://doi.org/10.1016/j.heares.2018.12.003

Article  PubMed  Google Scholar 

van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ (2012) Needle–tissue interaction forces – a survey of experimental data. Med Eng Phys 34:665–680. https://doi.org/10.1016/j.medengphy.2012.04.007

Article  PubMed  Google Scholar 

Mohammadi H, Ebrahimian A, Maftoon N (2021) Fracture behaviour of human skin in deep needle insertion can be captured using validated cohesive zone finite-element method. Comput Biol Med 139:104982. https://doi.org/10.1016/j.compbiomed.2021.104982

Article  CAS  PubMed  Google Scholar 

Gittard SD, Chen B, Xu H, Ovsianikov A, Chichkov BN, Monteiro-Riviere NA et al (2013) The effects of geometry on skin penetration and failure of polymer microneedles. J Adhes Sci Technol 27:227–243. https://doi.org/10.1080/01694243.2012.705101

Article  CAS  PubMed  Google Scholar 

van de Berg NJ, de Jong TL, van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ (2017) The influence of tip shape on bending force during needle insertion. Sci Rep 7:40477. https://doi.org/10.1038/srep40477

Article  CAS  PubMed 

Comments (0)

No login
gif