Von Unge M, Decraemer WF, Bagger-Sjöbäck D, Van Den Berghe D (1997) Tympanic membrane changes in experimental purulent otitis media. Hear Res 106:123–136. https://doi.org/10.1016/S0378-5955(97)00008-7
Guan X, Jiang S, Seale TW, Hitt BM, Gan RZ (2015) Morphological changes in the tympanic membrane associated with Haemophilus influenzae-induced acute otitis media in the chinchilla. Int J Pediatr Otorhinolaryngol 79:1462–1471. https://doi.org/10.1016/j.ijporl.2015.06.030
Ebrahimian A, Mohammadi H, Maftoon N (2024) Material characterization of human middle ear using machine-learning-based surrogate models. J Mech Behav Biomed Mater 153:106478. https://doi.org/10.1016/j.jmbbm.2024.106478
Devare J, Gubbels S, Raphael Y (2018) Outlook and future of inner ear therapy. Hear Res 368:127–135. https://doi.org/10.1016/j.heares.2018.05.009
Article PubMed PubMed Central Google Scholar
Magdy M, Elmowafy E, Elassal M, Ishak RAH (2022) Localized drug delivery to the middle ear: recent advances and perspectives for the treatment of middle and inner ear diseases. J Drug Deliv Sci Technol 69:103149. https://doi.org/10.1016/j.jddst.2022.103149
Heidemann CH, Lous J, Berg J, Christensen JJ, Håkonsen SJ, Jakobsen M et al (2016) Danish guidelines on management of otitis media in preschool children. Int J Pediatr Otorhinolaryngol 87:154–163. https://doi.org/10.1016/j.ijporl.2016.06.003
Article CAS PubMed Google Scholar
Mandel EM, Rockette HE, Bluestone CD, Paradise JL, Nozza RJ (1989) Myringotomy with and without tympanostomy tubes for chronic otitis media with effusion. Arch Otolaryngol - Head Neck Surg 115:1217–1224. https://doi.org/10.1001/archotol.1989.01860340071020
Article CAS PubMed Google Scholar
Rosenfeld RM, Tunkel DE, Schwartz SR et al (2022) Clinical practice guideline: tympanostomy tubes in children (update). Otolaryngol Neck Surg 166. https://doi.org/10.1177/01945998211065662
Ebrahimian A, Mohammadi H, Rosowski JJ, Cheng JT, Maftoon N (2023) Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling. Sci Rep 13:7329. https://doi.org/10.1038/s41598-023-34018-w
Article CAS PubMed PubMed Central Google Scholar
Ebrahimian A, Mohammadi H, Maftoon N (2023) Relative importance and interactions of parameters of finite-element models of human middle ear. J Acoust Soc Am 154:619–634. https://doi.org/10.1121/10.0020273
Békésy GV (1949) The structure of the middle ear and the hearing of one’s own voice by bone conduction. J Acoust Soc Am 21:217–232. https://doi.org/10.1121/1.1906501
Decraemer WF, Maes MA, Vanhuyse VJ (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13:463–468. https://doi.org/10.1016/0021-9290(80)90338-3
Article CAS PubMed Google Scholar
Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38:1807–1815. https://doi.org/10.1016/j.jbiomech.2004.08.022
Luo H, Lu H, Dai C, Gan RZ (2009) A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates. Int J Exp Comput Biomech 1:1. https://doi.org/10.1504/IJECB.2009.022856
Hesabgar SM, Marshall H, Agrawal SK, Samani A, Ladak HM (2010) Measuring the quasi-static Young’s modulus of the eardrum using an indentation technique. Hear Res 263:168–176. https://doi.org/10.1016/j.heares.2010.02.005
Rohani SA, Ghomashchi S, Agrawal SK, Ladak HM (2017) Estimation of the Young’s modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis. Hear Res 345:69–78. https://doi.org/10.1016/j.heares.2017.01.002
Caminos L, Garcia-Manrique J, Lima-Rodriguez A, Gonzalez-Herrera A (2018) Analysis of the mechanical properties of the human tympanic membrane and its influence on the dynamic behaviour of the human hearing system. Appl Bionics Biomech 2018:1–12. https://doi.org/10.1155/2018/1736957
Decraemer WF, Maes MA, Vanhuyse VJ, Vanpeperstraete P (1980) A non-linear viscoelastic constitutive equation for soft biological tissues, based upon a structural model. J Biomech 13:559–564. https://doi.org/10.1016/0021-9290(80)90056-1
Article CAS PubMed Google Scholar
Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35:305–314. https://doi.org/10.1007/s10439-006-9227-0
Wang X, Cheng T, Gan RZ (2007) Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am 122:906–917. https://doi.org/10.1121/1.2749417
Huang G, Daphalapurkar NP, Gan RZ, Lu H (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130:014501. https://doi.org/10.1115/1.2838034
Zhang X, Gan RZ (2010) Dynamic properties of human tympanic membrane–experimental measurement and modelling analysis. Int J Exp Comput Biomech 1:252. https://doi.org/10.1504/IJECB.2010.035260
Motallebzadeh H, Charlebois M, Funnell WRJ (2013) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134:4427–4434. https://doi.org/10.1121/1.4828831
Liang J, Luo H, Yokell Z, Nakmali DU, Gan RZ, Lu H (2016) Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection. Hear Res 339:1–11. https://doi.org/10.1016/j.heares.2016.05.012
Luo H, Jiang S, Nakmali DU, Gan RZ, Lu H (2016) Mechanical properties of a human eardrum at high strain rates after exposure to blast waves. J Dyn Behav Mater 2:59–73. https://doi.org/10.1007/s40870-015-0041-3
Liang J, Smith KD, Gan RZ, Lu H (2019) The effect of blast overpressure on the mechanical properties of the human tympanic membrane. J Mech Behav Biomed Mater 100:103368. https://doi.org/10.1016/j.jmbbm.2019.07.026
Article CAS PubMed Google Scholar
Gan RZ, Leckness K, Nakmali D, Ji XD (2018) Biomechanical measurement and modeling of human eardrum injury in relation to blast wave direction. Mil Med 183:245–251. https://doi.org/10.1093/milmed/usx149
Jiang S, Smith K, Gan RZ (2019) Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Hear Res 378:43–52. https://doi.org/10.1016/j.heares.2018.12.003
van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ (2012) Needle–tissue interaction forces – a survey of experimental data. Med Eng Phys 34:665–680. https://doi.org/10.1016/j.medengphy.2012.04.007
Mohammadi H, Ebrahimian A, Maftoon N (2021) Fracture behaviour of human skin in deep needle insertion can be captured using validated cohesive zone finite-element method. Comput Biol Med 139:104982. https://doi.org/10.1016/j.compbiomed.2021.104982
Article CAS PubMed Google Scholar
Gittard SD, Chen B, Xu H, Ovsianikov A, Chichkov BN, Monteiro-Riviere NA et al (2013) The effects of geometry on skin penetration and failure of polymer microneedles. J Adhes Sci Technol 27:227–243. https://doi.org/10.1080/01694243.2012.705101
Article CAS PubMed Google Scholar
van de Berg NJ, de Jong TL, van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ (2017) The influence of tip shape on bending force during needle insertion. Sci Rep 7:40477. https://doi.org/10.1038/srep40477
Comments (0)