Tuning and Timing of Organ of Corti Vibrations at the Apex of the Intact Chinchilla Cochlea

Cooper NP, Rhode WS (1996) Fast travelling waves, slow travelling waves and their interactions in experimental studies of apical cochlear mechanics. Audit Neurosci 2:289–299

Google Scholar 

Dong W, Cooper NP (2006) An experimental study into the acoustic-mechanical effects of invading the cochlea. J R Soc Interface 3:561–571

Article  PubMed  PubMed Central  Google Scholar 

Rhode WS, Cooper NP (1996) Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo. Audit Neurosci 3:101–121

Google Scholar 

Lee HY, Raphael PD, Park J, Ellerbee AK, Applegate BE, Oghalai JS (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci USA 112:3128–3133

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren T, He W, Kemp D (2016) Reticular lamina and basilar membrane vibrations in living mouse cochleae. Proc Natl Acad Sci USA 113:9910–9915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper NP, Vavakou A, van der Heijden M (2018) Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat Commun 9:3054. https://doi.org/10.1038/s41467-018-05483-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramamoorthy S, Zhang Y, Petrie T, Fridberger A, Ren T, Wang R, Jacques SL, Nuttall AL (2016) Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography. J Biomed Opt 21:25003

Article  PubMed  Google Scholar 

Warren RL, Ramamoorthy S, Ciganović N, Zhang Y, Wilson TM, Petrie T, Wang RK, Jacques SL, Reichenbach T, Nuttall AL, Fridberger A (2016) Minimal basilar membrane motion in low-frequency hearing. Proc Natl Acad Sci USA 113:E4304–E4310

Article  CAS  PubMed  PubMed Central  Google Scholar 

Recio-Spinoso A, Oghalai JS (2017) Mechanical tuning and amplification within the apex of the guinea pig cochlea. J Physiol 595:4549–4561. https://doi.org/10.1113/JP273881

Article  CAS  PubMed  PubMed Central  Google Scholar 

Recio-Spinoso A, Oghalai JS (2018) Unusual mechanical processing of sounds at the apex of the guinea pig cochlea. Hear Res 379:84–93

Article  Google Scholar 

Recio-Spinoso A (2022). Sound-evoked vibrations at the apex of the chinchilla cochlea. The 14th Mechanics of Hearing Symposium. Helsingør, Denmark

Ruggero MA, Rich NC (1983) Chinchilla auditory-nerve responses to low-frequency tones. J Acoust Soc Am 73:2096–2018

Article  CAS  PubMed  Google Scholar 

Recio-Spinoso A, Temchin AN, Ruggero MA (2015). Effects on auditory-nerve fibers of opening the otic capsule at the apex of the chinchilla cochlea. In: Mechanics of hearing: protein to perception. Proceedings of the 12th international workshop on the mechanics of hearing. https://doi.org/10.1063/1.4939341

Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am 49:1218–1231

Article  Google Scholar 

Ruggero MA, Rich NC, Robles L, Shivapuja BG (1990) Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J Acoust Soc Am 87:1612–1629

Article  CAS  PubMed  Google Scholar 

Ruggero MA, Narayan SS, Temchin AN, Recio A (2000) Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve fiber responses in chinchilla. Proc Natl Acad Sci USA 97:11744–11750

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papoulis A (1962) The fourier integral and its applications. McGraw-Hill, New York

Google Scholar 

Ren T, He W, Kemp D (2016) Reticular lamina and basilar membrane vibrations in living mouse cochleae. Proc Natl Acad Sci USA 113:9910–9915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper NP, Dong W (2003) Baseline position shifts and mechanical compression in the apical turns of the cochlea. In: Gummer AW (ed) Biophysics of the cochlea: from molecules to models. Proceedings of the international symposium, Titisee, Germany, 27 July - 1 August 2002, pp 261-270. https://doi.org/10.1142/9789812704931_0037

Narayan SS, Temchin AN, Recio A, Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

Article  CAS  PubMed  Google Scholar 

Temchin AN, Ruggero MA (2010) Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics. J Assoc Res Otolaryngol 11:297–318

Article  PubMed  Google Scholar 

Ruggero MA, Rich NC, Robles L, Recio A (1996) The effects of acoustic trauma, other cochlear injury, and death on basilar-membrane responses to sound. In: Axelsson A, Borchgrevnik H, Hamernik RP, Hellstrom P-A, Salvi RJ (eds.) Scientific basis of noise-induced hearing loss. Thieme, New York, pp 23-35

Recio A, Rich NC, Narayan SS, Ruggero MA (1998) Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 103:1972–1989

Article  CAS  PubMed  Google Scholar 

Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA (2012) Traveling waves on the organ of Corti of chinchilla: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers. J Neurosci 32:10522–10529

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao SS, Wang R, Raphael PD, Moayedi Y, Groves AK, Zuo J, Applegate BE, Oghalai JS (2014) Vibration of the organ of Corti within the cochlear apex in mice. J Neurophysiol 112:1192–1204

Article  PubMed  PubMed Central  Google Scholar 

He W, Kemp D, Ren T (2018) Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. Elife 7:e37625. https://doi.org/10.7554/eLife.37625

Article  PubMed  PubMed Central  Google Scholar 

He W, Burwood G, Porsov EV, Fridberger A, Nuttall A, Ren T (2022) The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea. Sci Rep 12:19810. https://doi.org/10.1038/s41598-022-24394-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho NY, Puria S (2022) Cochlear motion across the reticular lamina implies that it is not a stiff plate. Sci Rep 12:18715. https://doi.org/10.1038/s41598-022-23525-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruggero MA, Rich NC, Shivapuja BG, Temchin AN (1996) Auditory-nerve responses to low-frequency tones: intensity dependence. Aud Neurosci 2:159–189

Google Scholar 

Liberman MC, Kiang NY-S (1984) Single-unit labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16:75–90

Article  CAS  PubMed  Google Scholar 

Kiang NY-S (1990) Curious oddments of auditory-nerve studies. Hear Res 49:1–16

Article  CAS  PubMed  Google Scholar 

Békésy GV (1953) Description of some mechanical properties of the organ of Corti. J Acoust Soc Am 25:770–785

Article  Google Scholar 

Comments (0)

No login
gif