The Reduced Cortilymph Flow Path in the Short-Wave Region Allows Outer Hair Cells to Produce Focused Traveling-Wave Amplification

Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM (2023) The remarkable outer hair cell: proceedings of a symposium in Honour of W. E Brownell J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-022-00852-4

Article  PubMed  Google Scholar 

Robles L, Ruggiero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81(3):1305–1352

Article  CAS  PubMed  Google Scholar 

Guinan JJ Jr, Salt A, Cheatham MA (2012) Progress in cochlear physiology after Bekesy. Hear Res 293(1–2):12–20. https://doi.org/10.1016/j.heares.2012.05.005.S0378-5955(12)00127-X[pii]

Article  PubMed  PubMed Central  Google Scholar 

Lee HY, Raphael PD, Park J, Ellerbee AK, Applegate BE, Oghalai JS (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci USA 112(10):3128–3133. https://doi.org/10.1073/pnas.1500038112.1500038112[pii]

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee HY, Raphael PD, Xia A, Kim J, Grillet N, Applegate BE, Ellerbee Bowden AK, Oghalai JS (2016) Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti. J Neurosci 36(31):8160–8173. https://doi.org/10.1523/JNEUROSCI.1157-16.2016.36/31/8160[pii]

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper NP, Vavakou A, van der Heijden M (2018) Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat Commun 9(1):3054. https://doi.org/10.1038/s41467-018-05483-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dewey JB, Applegate BE, Oghalai JS (2019) Amplification and suppression of traveling waves along the mouse organ of Corti: evidence for spatial variation in the longitudinal coupling of outer hair cell-generated forces. J Neurosci : Off J Soc Neurosci 39(10):1805–1816. https://doi.org/10.1523/JNEUROSCI.2608-18.2019

Article  CAS  Google Scholar 

Dewey JB, Altoe A, Shera CA, Applegate BE, Oghalai JS (2021) Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo. Proc Natl Acad Sci U S A 118(43). https://doi.org/10.1073/pnas.2025206118

Fallah E, Strimbu CE, Olson ES (2019) Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli. Hear Res 377:271–281. https://doi.org/10.1016/j.heares.2019.04.001

Article  PubMed  PubMed Central  Google Scholar 

Fallah E, Strimbu CE, Olson ES (2021) Nonlinearity of intracochlear motion and local cochlear microphonic: comparison between guinea pig and gerbil. Hear Res 405:108234. https://doi.org/10.1016/j.heares.2021.108234

Article  PubMed  PubMed Central  Google Scholar 

Strimbu CE, Wang Y, Olson ES (2020) Manipulation of the endocochlear potential reveals two distinct types of cochlear nonlinearity. Biophys J 119(10):2087–2101. https://doi.org/10.1016/j.bpj.2020.10.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strimbu CE, Olson ES (2022) Salicylate-induced changes in organ of Corti vibrations. Hear Res 423:108389. https://doi.org/10.1016/j.heares.2021.108389

Article  PubMed  Google Scholar 

Strimbu CE, Chiriboga LA, Frost BL, Olson ES (2024) Regional differences in cochlear nonlinearity across the basal organ of Corti of gerbil: regional differences in cochlear nonlinearity. Hear Res 443:108951. https://doi.org/10.1016/j.heares.2024.108951

Article  PubMed  Google Scholar 

Frost BL, Strimbu CE, Olson ES (2022) Using volumetric optical coherence tomography to achieve spatially resolved organ of Corti vibration measurements. J Acoust Soc Am 151(2):1115. https://doi.org/10.1121/10.0009576

Article  PubMed  PubMed Central  Google Scholar 

Frost BL, Strimbu CE, Olson ES (2023) Reconstruction of transverse-longitudinal vibrations in the organ of Corti complex via optical coherence tomography. J Acoust Soc Am 153(2):1347. https://doi.org/10.1121/10.0017345

Article  PubMed  PubMed Central  Google Scholar 

Cho NH, Puria S (2022) Cochlear motion across the reticular lamina implies that it is not a stiff plate. Sci Rep 12(1):18715. https://doi.org/10.1038/s41598-022-23525-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puria S, Cho NH, Guinan JJ, Jr (2024) Differential transverse motion of individual outer hair cells measured in gerbil high-frequency region. In AIP Conference Proceedings (vol. 3062, No. 1). AIP Publishing. https://doi.org/10.1063/5.0191105

Altoè A, Dewey JB, Charaziak KK, Oghalai JS, Shera CA (2022) Overturning the mechanisms of cochlear amplification via area deformations of the organ of Corti. J Acoust Soc Am 152(4):2227. https://doi.org/10.1121/10.0014794

Article  PubMed  PubMed Central  Google Scholar 

Guinan JJ Jr (2022) Cochlear amplification in the short-wave region by outer hair cells changing organ-of-Corti area to amplify the fluid traveling wave. Hear Res 426:108641

Article  PubMed  PubMed Central  Google Scholar 

Guinan JJ, Jr. (2024) Outer hair cells can amplify the fluid traveling wave by changing organ-of-Corti area in the short-wave region. In AIP Conference Proceedings (vol. 3062, No. 1). AIP Publishing. https://doi.org/10.1063/5.0189698

Soons JA, Ricci AJ, Steele CR, Puria S (2015) Cytoarchitecture of the mouse organ of corti from base to apex, determined using in situ two-photon imaging. J Assoc Res Otolaryngol 16(1):47–66. https://doi.org/10.1007/s10162-014-0497-1

Article  PubMed  Google Scholar 

Karavitaki KD, Mountain DC (2007) Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of corti. Biophys J 92(9):3284–3293

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shokrian M, Knox C, Kelley DH, Nam JH (2020) Mechanically facilitated micro-fluid mixing in the organ of Corti. Sci Rep 10(1):14847. https://doi.org/10.1038/s41598-020-71380-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shokrian M, Lin WC, Macić A, Nam JH (2025) Corti fluid is a medium for outer hair cell force transmission. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1033-24.2024

Karavitaki KD, Mountain DC (2007) Imaging electrically evoked micromechanical motion within the organ of Corti of the excised gerbil cochlea. Biophys J 92(9):3294–3316. https://doi.org/10.1529/biophysj.106.083634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zagadou BF, Barbone PE, Mountain DC (2020) Significance of the microfluidic flow inside the organ of Corti. J Biomech Eng 142(8). https://doi.org/10.1115/1.4046637

Zagadou BF, Mountain DC (2012) Analysis of the cochlear amplifier fluid pump hypothesis. J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-011-0308-x

Article  PubMed  PubMed Central  Google Scholar 

Rabbitt RD, Clifford S, Breneman KD, Farrell B, Brownell WE (2009) Power efficiency of outer hair cell somatic electromotility. PLoS Comput Biol 5(7):e1000444

Article  PubMed  PubMed Central  Google Scholar 

van der Heijden M, Cooper NP (2018) Wave propagation in the mammalian cochlea. In: AIP Conference Proceedings (vol. 1965, No. 1). AIP Publishing

Cho NH, Wang H, Puria S (2022) Cochlear fluid spaces and structures of the gerbil high-frequency region measured using optical coherence tomography (OCT). J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-022-00836-4

Article  PubMed  PubMed Central  Google Scholar 

Sisto R, Belardinelli D, Altoè A, Shera CA, Moleti A (2023) Crucial 3-D viscous hydrodynamic contributions to the theoretical modeling of the cochlear response. J Acoust Soc Am 153(1):77. https://doi.org/10.1121/10.0016809

Article  PubMed  PubMed Central  Google Scholar 

Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos PJ, Popper AN, Fay RR (eds) The cochlea. Springer-Verlag, New York, Springer Handbook of Auditory Research, pp 44–129

Chapter  Google Scholar 

Raufer S, Idoff C, Zosuls A, Marino G, Blanke N, Bigio IJ, O’Malley JT, Burgess BJ, Nadol JB, Guinan JJ, Jr., Nakajima HH (2020) Anatomy of the human osseous spiral lamina and cochlear partition bridge: relevance for cochlear partition motion. J Assoc Res Otolaryngol 21(2):171–182. https://doi.org/10.1007/s10162-020-00748-1

Comments (0)

No login
gif