Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM (2023) The remarkable outer hair cell: proceedings of a symposium in Honour of W. E Brownell J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-022-00852-4
Robles L, Ruggiero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81(3):1305–1352
Article CAS PubMed Google Scholar
Guinan JJ Jr, Salt A, Cheatham MA (2012) Progress in cochlear physiology after Bekesy. Hear Res 293(1–2):12–20. https://doi.org/10.1016/j.heares.2012.05.005.S0378-5955(12)00127-X[pii]
Article PubMed PubMed Central Google Scholar
Lee HY, Raphael PD, Park J, Ellerbee AK, Applegate BE, Oghalai JS (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci USA 112(10):3128–3133. https://doi.org/10.1073/pnas.1500038112.1500038112[pii]
Article CAS PubMed PubMed Central Google Scholar
Lee HY, Raphael PD, Xia A, Kim J, Grillet N, Applegate BE, Ellerbee Bowden AK, Oghalai JS (2016) Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti. J Neurosci 36(31):8160–8173. https://doi.org/10.1523/JNEUROSCI.1157-16.2016.36/31/8160[pii]
Article CAS PubMed PubMed Central Google Scholar
Cooper NP, Vavakou A, van der Heijden M (2018) Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat Commun 9(1):3054. https://doi.org/10.1038/s41467-018-05483-z
Article CAS PubMed PubMed Central Google Scholar
Dewey JB, Applegate BE, Oghalai JS (2019) Amplification and suppression of traveling waves along the mouse organ of Corti: evidence for spatial variation in the longitudinal coupling of outer hair cell-generated forces. J Neurosci : Off J Soc Neurosci 39(10):1805–1816. https://doi.org/10.1523/JNEUROSCI.2608-18.2019
Dewey JB, Altoe A, Shera CA, Applegate BE, Oghalai JS (2021) Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo. Proc Natl Acad Sci U S A 118(43). https://doi.org/10.1073/pnas.2025206118
Fallah E, Strimbu CE, Olson ES (2019) Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli. Hear Res 377:271–281. https://doi.org/10.1016/j.heares.2019.04.001
Article PubMed PubMed Central Google Scholar
Fallah E, Strimbu CE, Olson ES (2021) Nonlinearity of intracochlear motion and local cochlear microphonic: comparison between guinea pig and gerbil. Hear Res 405:108234. https://doi.org/10.1016/j.heares.2021.108234
Article PubMed PubMed Central Google Scholar
Strimbu CE, Wang Y, Olson ES (2020) Manipulation of the endocochlear potential reveals two distinct types of cochlear nonlinearity. Biophys J 119(10):2087–2101. https://doi.org/10.1016/j.bpj.2020.10.005
Article CAS PubMed PubMed Central Google Scholar
Strimbu CE, Olson ES (2022) Salicylate-induced changes in organ of Corti vibrations. Hear Res 423:108389. https://doi.org/10.1016/j.heares.2021.108389
Strimbu CE, Chiriboga LA, Frost BL, Olson ES (2024) Regional differences in cochlear nonlinearity across the basal organ of Corti of gerbil: regional differences in cochlear nonlinearity. Hear Res 443:108951. https://doi.org/10.1016/j.heares.2024.108951
Frost BL, Strimbu CE, Olson ES (2022) Using volumetric optical coherence tomography to achieve spatially resolved organ of Corti vibration measurements. J Acoust Soc Am 151(2):1115. https://doi.org/10.1121/10.0009576
Article PubMed PubMed Central Google Scholar
Frost BL, Strimbu CE, Olson ES (2023) Reconstruction of transverse-longitudinal vibrations in the organ of Corti complex via optical coherence tomography. J Acoust Soc Am 153(2):1347. https://doi.org/10.1121/10.0017345
Article PubMed PubMed Central Google Scholar
Cho NH, Puria S (2022) Cochlear motion across the reticular lamina implies that it is not a stiff plate. Sci Rep 12(1):18715. https://doi.org/10.1038/s41598-022-23525-x
Article CAS PubMed PubMed Central Google Scholar
Puria S, Cho NH, Guinan JJ, Jr (2024) Differential transverse motion of individual outer hair cells measured in gerbil high-frequency region. In AIP Conference Proceedings (vol. 3062, No. 1). AIP Publishing. https://doi.org/10.1063/5.0191105
Altoè A, Dewey JB, Charaziak KK, Oghalai JS, Shera CA (2022) Overturning the mechanisms of cochlear amplification via area deformations of the organ of Corti. J Acoust Soc Am 152(4):2227. https://doi.org/10.1121/10.0014794
Article PubMed PubMed Central Google Scholar
Guinan JJ Jr (2022) Cochlear amplification in the short-wave region by outer hair cells changing organ-of-Corti area to amplify the fluid traveling wave. Hear Res 426:108641
Article PubMed PubMed Central Google Scholar
Guinan JJ, Jr. (2024) Outer hair cells can amplify the fluid traveling wave by changing organ-of-Corti area in the short-wave region. In AIP Conference Proceedings (vol. 3062, No. 1). AIP Publishing. https://doi.org/10.1063/5.0189698
Soons JA, Ricci AJ, Steele CR, Puria S (2015) Cytoarchitecture of the mouse organ of corti from base to apex, determined using in situ two-photon imaging. J Assoc Res Otolaryngol 16(1):47–66. https://doi.org/10.1007/s10162-014-0497-1
Karavitaki KD, Mountain DC (2007) Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of corti. Biophys J 92(9):3284–3293
Article CAS PubMed PubMed Central Google Scholar
Shokrian M, Knox C, Kelley DH, Nam JH (2020) Mechanically facilitated micro-fluid mixing in the organ of Corti. Sci Rep 10(1):14847. https://doi.org/10.1038/s41598-020-71380-5
Article CAS PubMed PubMed Central Google Scholar
Shokrian M, Lin WC, Macić A, Nam JH (2025) Corti fluid is a medium for outer hair cell force transmission. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1033-24.2024
Karavitaki KD, Mountain DC (2007) Imaging electrically evoked micromechanical motion within the organ of Corti of the excised gerbil cochlea. Biophys J 92(9):3294–3316. https://doi.org/10.1529/biophysj.106.083634
Article CAS PubMed PubMed Central Google Scholar
Zagadou BF, Barbone PE, Mountain DC (2020) Significance of the microfluidic flow inside the organ of Corti. J Biomech Eng 142(8). https://doi.org/10.1115/1.4046637
Zagadou BF, Mountain DC (2012) Analysis of the cochlear amplifier fluid pump hypothesis. J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-011-0308-x
Article PubMed PubMed Central Google Scholar
Rabbitt RD, Clifford S, Breneman KD, Farrell B, Brownell WE (2009) Power efficiency of outer hair cell somatic electromotility. PLoS Comput Biol 5(7):e1000444
Article PubMed PubMed Central Google Scholar
van der Heijden M, Cooper NP (2018) Wave propagation in the mammalian cochlea. In: AIP Conference Proceedings (vol. 1965, No. 1). AIP Publishing
Cho NH, Wang H, Puria S (2022) Cochlear fluid spaces and structures of the gerbil high-frequency region measured using optical coherence tomography (OCT). J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-022-00836-4
Article PubMed PubMed Central Google Scholar
Sisto R, Belardinelli D, Altoè A, Shera CA, Moleti A (2023) Crucial 3-D viscous hydrodynamic contributions to the theoretical modeling of the cochlear response. J Acoust Soc Am 153(1):77. https://doi.org/10.1121/10.0016809
Article PubMed PubMed Central Google Scholar
Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos PJ, Popper AN, Fay RR (eds) The cochlea. Springer-Verlag, New York, Springer Handbook of Auditory Research, pp 44–129
Raufer S, Idoff C, Zosuls A, Marino G, Blanke N, Bigio IJ, O’Malley JT, Burgess BJ, Nadol JB, Guinan JJ, Jr., Nakajima HH (2020) Anatomy of the human osseous spiral lamina and cochlear partition bridge: relevance for cochlear partition motion. J Assoc Res Otolaryngol 21(2):171–182. https://doi.org/10.1007/s10162-020-00748-1
Comments (0)