Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 105:275–292. https://doi.org/10.1121/1.424584
Article CAS PubMed Google Scholar
Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352. https://doi.org/10.1152/physrev.2001.81.3.1305
Article CAS PubMed Google Scholar
Allen JB, Neely ST (1992) Micromechanical models of the cochlea. Phys Today 45:40–47. https://doi.org/10.1063/1.881349
Gold T, Gray J (1948) Hearing. II. The physical basis of the action of the cochlea. Proc R Soc B 135:492–498. https://doi.org/10.1098/rspb.1948.0025
Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90. https://doi.org/10.1016/0378-5955(83)90136-3
Article CAS PubMed Google Scholar
Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. PNAS 74:2407–2411. https://doi.org/10.1073/pnas.74.6.2407
Article CAS PubMed PubMed Central Google Scholar
Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J Physiol 388:323–347. https://doi.org/10.1113/jphysiol.1987.sp016617
Article CAS PubMed PubMed Central Google Scholar
Lee HY, Raphael PD, Xia A, Kim J, Grillet N, Applegate BE, Ellerbee Bowden AK, Oghalai JS (2016) Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti. J Neurosci 36:8160–8173. https://doi.org/10.1523/JNEUROSCI.1157-16.2016
Article CAS PubMed PubMed Central Google Scholar
Cooper NP, Vavakou A, van der Heijden M (2018) Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat Commun 9:3054. https://doi.org/10.1038/s41467-018-05483-z
Article CAS PubMed PubMed Central Google Scholar
Fallah E, Strimbu CE, Olson ES (2019) Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli. Hear Res 377:271–281. https://doi.org/10.1016/j.heares.2019.04.001
Article PubMed PubMed Central Google Scholar
Dewey JB, Applegate BE, Oghalai JS (2019) Amplification and suppression of traveling waves along the mouse organ of Corti: evidence for spatial variation in the longitudinal coupling of outer hair cell-generated forces. J Neurosci 9:1805–1816. https://doi.org/10.1523/JNEUROSCI.2608-18.2019
Ren T, He W (2020) Two-tone distortion in reticular lamina vibration of the living cochlea. Commun Biol 3:35. https://doi.org/10.1038/s42003-020-0762-2
Article PubMed PubMed Central Google Scholar
Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231. https://doi.org/10.1121/1.1912485
Robles L, Ruggero MA, Rich NC (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input–output functions, tuning curves, and response phases. J Acoust Soc Am 80:1364–1374. https://doi.org/10.1121/1.394389
Article CAS PubMed Google Scholar
Cooper NP, Rhode WS (1992) Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts. Hear Res 63:163–190. https://doi.org/10.1016/0378-5955(92)90083-Y
Article CAS PubMed Google Scholar
Nuttall AL, Dolan DF (1996) Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. J Acoust Soc Am 99:1556–1565. https://doi.org/10.1121/1.414732
Article CAS PubMed Google Scholar
Ruggero MA, Rich NC, Recio A, Shyamla Narayan S, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163. https://doi.org/10.1121/1.418265
Article CAS PubMed Google Scholar
Gaskill SA, Brown AM (1996) Suppression of human acoustic distortion product: Dual origin of 2f1− f2. J Acoust Soc Am 100:3268–3274. https://doi.org/10.1121/1.417210
Article CAS PubMed Google Scholar
Kummer P, Janssen T, Arnold W (1995) Suppression tuning characteristics of the 2f 1− f 2 distortion-product otoacoustic emission in humans. J Acoust Soc Am 98:197–210. https://doi.org/10.1121/1.413747
Article CAS PubMed Google Scholar
Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798. https://doi.org/10.1121/1.426948
Article CAS PubMed Google Scholar
Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414. https://doi.org/10.1038/349413a0
Article CAS PubMed PubMed Central Google Scholar
Cooper NP, Rhode WS (1997) Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. J Neurophysiol 78:261–270. https://doi.org/10.1152/jn.1997.78.1.261
Article CAS PubMed Google Scholar
Kemp D (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391. https://doi.org/10.1121/1.382104
Article CAS PubMed Google Scholar
Gorga MP, Neely ST, Ohlrich B, Hoover B, Redner J, Peters J (1997) From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. Ear Hear 18:440–455. https://doi.org/10.1097/00003446-199712000-00003
Article CAS PubMed Google Scholar
Johnson TA, Neely ST, Garner CA, Gorga MP (2006) Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions. J Acoust Soc Am 199:418–428. https://doi.org/10.1121/1.2133714
Stiepan S, Goodman SS, Dhar S (2022) Optimizing distortion product otoacoustic emission recordings in normal-hearing ears by adopting cochlear place-specific stimuli. J Acoust Soc Am 152:776–788. https://doi.org/10.1121/10.0013218
Article PubMed PubMed Central Google Scholar
Christensen AT, Ordoñez R, Hammershøi D (2015) Stimulus ratio dependence of low-frequency distortion-product otoacoustic emissions in humans. J Acoust Soc Am 137:679–689. https://doi.org/10.1121/1.4906157
Withnell RH, Yates GK (1998) Onset of basilar membrane non-linearity reflected in cubic distortion tone input-output functions. Hear Res 123:87–96. https://doi.org/10.1016/s0378-5955(98)00100-2
Article CAS PubMed Google Scholar
Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047. https://doi.org/10.1121/1.413320
Article CAS PubMed Google Scholar
Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22:95–104. https://doi.org/10.1016/0378-5955(86)90087-0
Comments (0)